
Lesson 0: Course Introduction

1

CMSC 336
Type Systems for Programming Languages

David MacQueen
Winter, 2002

www.classes.cs.uchicago.edu/classes/
archive/2002/winter/CS33600

1/3/02 Type Systems, Intro 2

CS Theory

• Computer Science =
 applied mathematics + engineering

• CS theory is the applied mathematics part

• much of this concerns formalisms for
computation (e.g. models of computation,
programming languages) and their
metatheory

Lesson 0: Course Introduction

2

1/3/02 Type Systems, Intro 3

Theory: Computability, Complexity

• computability theory
– models of computation
– what is computable, what is not

• complexity theory and analysis of algorithms
– how hard or costly is it to compute something
– what is feasibly computable
– applications: design of efficient algorithms

1/3/02 Type Systems, Intro 4

Theory of programming

• semantics of computation
– what do terms in a formalism mean?

• logics of computation (programming logics)
– specifying computational tasks and verifying

that programs satisfy their specifications

• computational logic
– systems for automatic/interactive deduction

• type theory and type systems
– which programs “make sense”

Lesson 0: Course Introduction

3

1/3/02 Type Systems, Intro 5

What are type systems?

“A type system is a tractable syntactic
method for proving the absence of certain
program behaviors by classifying phrases
according to the kinds of values they
compute.”

“A type system can be regarded as
calculating a kind of static approximation to
the run-time behaviors of the terms in a
program.”

1/3/02 Type Systems, Intro 6

Thesis: Static typing is fundamental

Static typing, based on a sound type
system (“well-typed programs do not go
wrong”) is a basic requirement for robust
systems programming.

Lesson 0: Course Introduction

4

1/3/02 Type Systems, Intro 7

Why Types are Useful

• error detection: early detection of common
programming errors

• safety: well typed programs do not go wrong
• design: types provide a language and discipline

for design of data structures and program
interfaces

• abstraction: types enforce language and
programmer abstractions

1/3/02 Type Systems, Intro 8

Why Types are Useful (cont)

• verification: properties and invariants
expressed in types are verified by the
compiler (“a priori guarantee of
correctness”)

• software evolution: support for orderly
evolution of software
– consequences of changes can be traced

• documentation: types express programmer
assumptions and are verified by compiler

Lesson 0: Course Introduction

5

1/3/02 Type Systems, Intro 9

Some history

• 1870s: formal logic (Frege), set theory (Cantor)
• 1910s: ramified types (Whitehead and Russell)
• 1930s: untyped lambda calculus (Church)
• 1940s: simply typed lambda calc. (Church)
• 1960s: Automath (de Bruijn); Curry-Howard

correspondence; Curry-Hindley type inference;
Lisp, Simula, ISWIM

• 1970s: Martin-Löf type theory; System F (Girard);
polymorphic lambda calc. (Reynolds); polymorphic
type inference (Milner), ML, CLU

1/3/02 Type Systems, Intro 10

Some History (cont)

• 1980s: NuPRL, Calculus of Constructions,
ELF, linear logic; subtyping (Reynolds,
Cardelli, Mitchell), bounded quantification;
dependent types, modules (Burstall,
Lampson, MacQueen)

• 1990s: higher-order subtyping, OO type
systems, object calculi; typed intermediate
languages, typed assembly languages

Lesson 0: Course Introduction

6

1/3/02 Type Systems, Intro 11

Course Overview

• Part I: untyped systems
– abstract syntax
– inductive definitions and proofs
– operational semantics
– inference rules

• Part II: simply typed lambda calculus
– types and typing rules
– basic constructs: products, sums, functions, ...
– intro to type safety

1/3/02 Type Systems, Intro 12

Course Overview (cont)

• Part III: subtyping
– metatheory
– case studies (imperative objects)

• Part IV: recursive types
– iso-recursive and equi-recursive forms
– metatheory (coinduction)

• Part V: polymorphism
– ML-style type reconstruction
– System F
– polymorphism and subtyping: bounded quantifiers

Lesson 0: Course Introduction

7

1/3/02 Type Systems, Intro 13

Course Overview (cont)

• Part VI: Type operators
– higher-order type constructs
– System Fw

– subtyping: System F<:
w

– case study: functional objects

1/3/02 Type Systems, Intro 14

Topics omitted

• type systems as logics
• denotational semantics of programs and

types
• module systems
• full-featured object-oriented languages

Lesson 0: Course Introduction

8

1/3/02 Type Systems, Intro 15

Required background

The course is self-contained, but the
following will be useful:

– “mathematical maturity”
– some familiarity with (naive) set theory,

elementary logic, induction
– some familiarity with a higher-order functional

language (e.g. scheme or ML or Haskell)

1/3/02 Type Systems, Intro 16

Implementation

• Several chapters present implementations
of type checkers.

• The programming language used in the text
is a simple subset of Ocaml. In the course,
I will substitute code in a similar subset of
Standard ML.

• For documentation/tutorials on Standard
ML, see www.smlnj.org

