
Service to Worker

Context
The system controls flow of execution and access to business data, from which it creates presen-
tation content.

Note
The Service to Worker pattern, like the Dispatcher View pattern, describes a common

combination of other patterns from the catalog. Both of these macro patterns describe the
combination of a controller and dispatcher with views and helpers. While describing this
common structure, they emphasize related but different usage patterns.

Problem
The problem is a combination of the problems solved by the Front Controller and View Helper
patterns in the presentation tier. There is no centralized component for managing access control,
content retrieval, or view management, and there is duplicate control code scattered throughout
various views. Additionally, business logic and presentation formatting logic are intermingled
within these views, making the system less flexible, less reusable, and generally less resilient to
change.

Intermingling business logic with view processing also reduces modularity and provides a
poor separation of roles among Web production and software development teams.

Forces
• Authentication and authorization checks are completed per request.
• Scriptlet code within views should be minimized.
• Business logic should be encapsulated in components other than the view.
• Control flow is relatively complex and based on values from dynamic content.
• View management logic is relatively sophisticated, with multiple views potentially

mapping to the same request.

Solution
Combine a controller and dispatcher with views and helpers to handle client requests and
prepare a dynamic presentation as the response. Controllers delegate content retrieval to
helpers, which manage the population of the intermediate model for the view. A dis-
patcher is responsible for view management and navigation and can be encapsulated
either within a controller or a separate component.

Service to Worker describes the combination of the Front Controller and View Helper pat-
terns with a dispatcher component.

While this pattern and the Dispatcher View pattern describe a similar structure, the two pat-
terns suggest a different division of labor among the components. In Service to Worker, the
controller and the dispatcher have more responsibilities.

Since the Service to Worker and Dispatcher View patterns represent a common combination
of other patterns from the catalog, each warrants its own name to promote efficient communica-
tion among developers. Unlike the Service to Worker pattern, the Dispatcher View pattern sug-
gests deferring content retrieval to the time of view processing.

In the Dispatcher View pattern, the dispatcher typically plays a limited to moderate role in
view management. In the Service to Worker pattern, the dispatcher typically plays a moderate
to large role in view management.

A limited role for the dispatcher occurs when no outside resources are utilized in order to
choose the view. The information encapsulated in the request is sufficient to determine the view
to dispatch the request. For example,

http://some.server.com/servlet/Controller?next=login.jsp

The sole responsibility of the dispatcher component in this case is to dispatch to the view
login.jsp.

An example of the dispatcher playing a moderate role is the case where the client submits a
request directly to a controller with a query parameter that describes an action to be completed:

http://some.server.com/servlet/Controller?action=login

The responsibility of the dispatcher component here is to translate the logical name login
into the resource name of an appropriate view, such as login.jsp, and dispatch to that view.
To accomplish this translation, the dispatcher may access resources such as an XML configura-
tion file that specifies the appropriate view to display.

On the other hand, in the Service to Worker pattern, the dispatcher might be more sophisti-
cated. The dispatcher may invoke a business service to determine the appropriate view to dis-
play.

The shared structure of Service to Worker and Dispatcher View consists of a controller
working with a dispatcher, views, and helpers.

Structure
The class diagram in Figure 1.1 represents the Service to Worker pattern.

Figure 1.1 Service to Worker class diagram.

Participants and Responsibilities
Figure 1.2 shows the sequence diagram that represents the Service to Worker pattern.

Figure 1.2 Service to Worker sequence diagram.

As stated, Service to Worker and Dispatcher View represent a similar structure. The main dif-
ference is that Service to Worker describes architectures with more behavior “up front” in the con-
troller and dispatcher, while Dispatcher View describes architectures with more behavior moved
back to the time of view processing. Thus, the two patterns suggest a continuum, where behavior
is either encapsulated closer to the front or moved farther back in the process flow.

Controller
The controller is typically the initial contact point for handling a request. It works with a dis-
patcher to complete view management and navigation. The controller manages authentication,
authorization, content retrieval, validation, and other aspects of request handling. It delegates to
helpers to complete portions of this work.

Dispatcher
A dispatcher is responsible for view management and navigation, managing the choice of the
next view to present to the user and providing the mechanism for vectoring control to this
resource.

A dispatcher can be encapsulated within a controller or it can be a separate component work-
ing in coordination with the controller. The dispatcher can provide static dispatching to the view
or it may provide a more sophisticated dynamic dispatching mechanism.

The dispatcher uses the RequestDispatcher object (supported in the servlet specification), but
it also typically encapsulates some additional processing. The more responsibilities that this
component encapsulates, the more it fits into the Service to Worker pattern. Conversely, when
the dispatcher plays a more limited role, it fits more closely into the Dispatcher View pattern.

View
A View represents and displays information to the client. The information that is used in a display
is retrieved from a model. Helpers support views by encapsulating and adapting a model for use in
a display.

Helper
A helper is responsible for helping a view or controller complete its processing. Thus, helpers have
numerous responsibilities, including gathering data required by the view and storing this intermedi-
ate model, in which case the helper is sometimes referred to as a value bean. Additionally, helpers

may adapt this data model for use by the view. Helpers can service requests for data from the view
by simply providing access to the raw data or by formatting the data as Web content.

A view may work with any number of helpers, which are typically implemented as Java-
Beans (JSP 1.0+) and custom tags (JSP 1.1+). Additionally, a helper may represent a Command
object or a delegate.

ValueBean
A value bean is another name for a helper that is responsible for holding intermediate model

state for use by a view. A typical case, as shown in the sequence diagram in Figure 7.12, has the
business service returning a value bean in response to a request. In this case, ValueBean fulfills
the role of a Value Object.

BusinessService

The business service is a role that is fulfilled by the service the client is seeking to access.
Typically, the business service is accessed via a Business delegate. The business delegate’s
role is to provide control and protection for the business service.

