
Data Access Object 

Context 
Access to data varies depending on the source of the data. Access to persistent storage, such as
to a database, varies greatly depending on the type of storage (relational databases, object-ori-
ented databases, flat files, and so forth) and the vendor implementation. 

Problem 
Many real-world J2EE applications need to use persistent data at some point. For many applica-
tions, persistent storage is implemented with different mechanisms, and there are marked differ-
ences in the APIs used to access these different persistent storage mechanisms. Other
applications may need to access data that resides on separate systems. For example, the data
may reside in mainframe systems, Lightweight Directory Access Protocol (LDAP) repositories,
and so forth. Another example is where data is provided by services through external systems
such as business-to-business (B2B) integration systems, credit card bureau service, and so forth.

Typically, applications use shared distributed components such as entity beans to represent
persistent data. An application is considered to employ bean-managed persistence (BMP) for its
entity beans when these entity beans explicitly access the persistent storage—the entity bean
includes code to directly access the persistent storage. An application with simpler requirements
may forego using entity beans and instead use session beans or servlets to directly access the
persistent storage to retrieve and modify the data. Or, the application could use entity beans
with container-managed persistence, and thus let the container handle the transaction and per-
sistent details.

Applications can use the JDBC API to access data residing in a relational database manage-
ment system (RDBMS). The JDBC API enables standard access and manipulation of data in
persistent storage, such as a relational database. JDBC enables J2EE applications to use SQL
statements, which are the standard means for accessing RDBMS tables. However, even within
an RDBMS environment, the actual syntax and format of the SQL statements may vary depend-
ing on the particular database product. 

There is even greater variation with different types of persistent storage. Access mechanisms,
supported APIs, and features vary between different types of persistent stores such as RDBMS,
object-oriented databases, flat files, and so forth. Applications that need to access data from a
legacy or disparate system (such as a mainframe, or B2B service) are often required to use APIs
that may be proprietary. Such disparate data sources offer challenges to the application and can
potentially create a direct dependency between application code and data access code. When
business components—entity beans, session beans, and even presentation components like
servlets and helper objects for Java Server Pages (JSPs)—need to access a data source, they can
use the appropriate API to achieve connectivity and manipulate the data source. But including
the connectivity and data access code within these components introduces a tight coupling
between the components and the data source implementation. Such code dependencies in com-
ponents make it difficult and tedious to migrate the application from one type of data source to
another. When the data source changes, the components need to be changed to handle the new
type of data source. 

Forces 
• Components such as bean-managed entity beans, session beans, servlets, and other

objects like helpers for JSPs need to retrieve and store information from persistent stores
and other data sources like legacy systems, B2B, LDAP, and so forth. 



• Persistent storage APIs vary depending on the product vendor. Other data sources may
have APIs that are nonstandard and/or proprietary. These APIs and their capabilities also
vary depending on the type of storage—RDBMS, object-oriented database management
system (OODBMS), XML documents, flat files, and so forth. There is a lack of uniform
APIs to address the requirements to access such disparate systems.

• Components typically use proprietary APIs to access external and/or legacy systems to
retrieve and store data. 

• Portability of the components is directly affected when specific access mechanisms and
APIs are included in the components. 

• Components need to be transparent to the actual persistent store or data source imple-
mentation to provide easy migration to different vendor products, different storage types,
and different data source types. 

Solution 
Use a Data Access Object (DAO) to abstract and encapsulate all access to the data source.
The DAO manages the connection with the data source to obtain and store data. 

The DAO implements the access mechanism required to work with the data source. The data
source could be a persistent store like an RDBMS, an external service like a B2B exchange, a
repository like an LDAP database, or a business service accessed via CORBA Internet Inter-
ORB Protocol (IIOP) or low-level sockets. The business component that relies on the DAO uses
the simpler interface exposed by the DAO for its clients. The DAO completely hides the data
source implementation details from its clients. Because the interface exposed by the DAO to cli-
ents does not change when the underlying data source implementation changes, this pattern
allows the DAO to adapt to different storage schemes without affecting its clients or business
components. Essentially, the DAO acts as an adapter between the component and the data
source.

Structure 
Figure 1.1 shows the class diagram representing the relationships for the DAO pattern.

Figure 1.1 Data Access Object. 



Participants and Responsibilities 
Figure 1.2 contains the sequence diagram that shows the interaction between the various partic-
ipants in this pattern.

 

Figure 1.2 Data Access Object sequence diagram.

BusinessObject 
The BusinessObject represents the data client. It is the object that requires access to the data
source to obtain and store data. A BusinessObject may be implemented as a session bean, entity
bean, or some other Java object, in addition to a servlet or helper bean that accesses the data
source. 



DataAccessObject 
The DataAccessObject is the primary object of this pattern. The DataAccessObject abstracts the
underlying data access implementation for the BusinessObject to enable transparent access to
the data source. The BusinessObject also delegates data load and store operations to the
DataAccessObject. 

DataSource 
This represents a data source implementation. A data source could be a database such as an
RDBMS, OODBMS, XML repository, flat file system, and so forth. A data source can also be
another system (legacy/mainframe), service (B2B service or credit card bureau), or some kind
of repository (LDAP).

ValueObject 
This represents a value object used as a data carrier. The DataAccessObject may use a value object to 
return data to the client. The DataAccessObject may also receive the data from the client in a value object 
to update the data in the data source.


