
Value Object Assembler

Context 
In a J2EE application, the server-side business components are implemented using session
beans, entity beans, DAOs, and so forth. Application clients frequently need to access data that
is composed from multiple objects. 

Problem 
Application clients typically require the data for the model or parts of the model to present to
the user or to use for an intermediate processing step before providing some service. The appli-
cation model is an abstraction of the business data and business logic implemented on the server
side as business components. A model may be expressed as a collection of objects put together
in a structured manner (tree or graph). In a J2EE application, the model is a distributed collec-
tion of objects such as session beans, entity beans, or DAOs and other objects. For a client to
obtain the data for the model, such as to display to the user or to perform some processing, it
must access individually each distributed object that defines the model. This approach has sev-
eral drawbacks: 

• Because the client must access each distributed component individually, there is a tight
coupling between the client and the distributed components of the model over the net-
work

• The client accesses the distributed components via the network layer, and this can lead to
performance degradation if the model is complex with numerous distributed compo-
nents. Network and client performance degradation occur when a number of distributed
business components implement the application model and the client directly interacts
with these components to obtain model data from that component. Each such access
results in a remote method call that introduces network overhead and increases the chat-
tiness between the client and the business tier.

• The client must reconstruct the model after obtaining the model’s parts from the distrib-
uted components. The client therefore needs to have the necessary business logic to con-
struct the model. If the model construction is complex and numerous objects are
involved in its definition, then there may be an additional performance overhead on the
client due to the construction process. In addition, the client must contain the business
logic to manage the relationships between the components, which results in a more com-
plex, larger client. When the client constructs the application model, the construction
happens on the client side. Complex model construction can result in a significant perfor-
mance overhead on the client side for clients with limited resources.

• Because the client is tightly coupled to the model, changes to the model require changes to
the client. Furthermore, if there are different types of clients, it is more difficult to manage
the changes across all client types. When there is tight coupling between the client and
model implementation, which occurs when the client has direct knowledge of the model and
manages the business component relationships, then changes to the model necessitate
changes to the client. There is the further problem of code duplication for model access,
which occurs when an application has many types of clients. This duplication makes client
(code) management difficult when the model changes.



Forces 
• Separation of business logic is required between the client and the server-side compo-

nents. 
• Because the model consists of distributed components, access to each component is asso-

ciated with a network overhead. It is desirable to minimize the number of remote method
calls over the network. 

• The client typically needs only to obtain the model to present it to the user. If the client
must interact with multiple components to construct the model on the fly, the chattiness
between the client and the application increases. Such chattiness may reduce the network
performance. 

• Even if the client wants to perform an update, it usually updates only certain parts of the
model and not the entire model. 

• Clients do not need to be aware of the intricacies and dependencies in the model imple-
mentation. It is desirable to have loose coupling between the clients and the business
components that implement the application model. 

• Clients do not otherwise need to have the additional business logic required to construct
the model from various business components. 

Solution 
Use a Value Object Assembler to build the required model or submodel. The Value Object
Assembler uses value objects to retrieve data from various business objects and other
objects that define the model or part of the model. 

The Value Object Assember constructs a composite value object that represents data from dif-
ferent business components. The value object caries the data for the model to the client in a sin-
gle method call. Since the model data can be complex, it is recommended that this value object
be immutable. That is, the client obtains such value objects with the sole purpose of using them
for presentation and processing in a read-only manner. Clients are not allowed to make changes
to the value objects.

When the client needs the model data, and if the model is represented by a single coarse-
grained component (such as a Composite Entity), then the process of obtaining the model data
is simple. The client simply requests the coarse-grained component for its composite value
object. However, most real-world applications have a model composed of a combination of
many coarse-grained and fine-grained components. In this case, the client must interact with
numerous such business components to obtain all the data necessary to represent the model. The
immediate drawbacks of this approach can be seen in that the clients become tightly coupled to
the model implementation (model elements) and that the clients tend to make numerous remote
method invocations to obtain the data from each individual component. 

In some cases, a single coarse-grained component provides the model or parts of the model
as a single value object (simple or composite). However, when multiple components represent
the model, a single value object (simple or composite) may not represent the entire model. To
represent the model, it is necessary to obtain value objects from various components and assem-
ble them into a new composite value object. The server, not the client, should perform such “on-
the-fly” construction of the model. 

Structure 
Figure 1.1 shows the class diagram representing the relationships for the Value Object Assem-
bler pattern.



Figure 1.1 Value Object Assembler class diagram.

Participants and Responsibilities 
The sequence diagram in Figure 1.2 shows the interaction between the various participants in
the Value Object Assembler pattern. 



Figure 1.2 Value Object Assembler sequence diagram.

ValueObjectAssembler 
The ValueObjectAssembler is the main class of this pattern. The ValueObjectAssembler con-
structs a new value object based on the requirements of the application when the client requests
a composite value object. The ValueObjectAssembler then locates the required BusinessObject
instances to retrieve data to build the composite value object. BusinessObjects are business-tier
components such as entity beans and session beans, DAOs, and so forth.

Client
If the ValueObjectAssembler is implemented as an arbitrary Java object, then the client is typi-
cally a Session Facade that provides the controller layer to the business tier. If the ValueOb-
jectAssembler is implemented as a session bean, then the client can be a Session Facade or a
Business Delegate.

BusinessObject
The BusinessObject participates in the construction of the new value object by providing the
required data to the ValueObjectAssembler. Therefore, the BusinessObject is a role that can be
fulfilled by a session bean, an entity bean, a DAO, or a regular Java object.

ValueObject 
The ValueObject is a composite value object that is constructed by the ValueObjectAssembler
and returned to the client. This represents the complex data from various components that
define the application model.

BusinessObject 
BusinessObject is a role that can be fulfilled by a session bean, entity bean, or DAO. When the assembler 
needs to obtain data directly from the persistent storage to build the value object, it can use a DAO. This is 
shown as the DataAccessObject object in the diagrams.


