
Value Object 

Context 
Application clients need to exchange data with enterprise beans.

Problem 
J2EE applications implement server-side business components as session beans and entity
beans. Some methods exposed by the business components return data to the client. Often, the
client invokes a business object’s get methods multiple times until it obtains all the attribute val-
ues. 

Session beans represent the business services and are not shared between users. A session
bean provides coarse-grained service methods when implemented per the Session Facade pat-
tern. 

Entity beans, on the other hand, are multiuser, transactional objects representing persistent
data. An entity bean exposes the values of attributes by providing an accessor method (also
referred to as a getter or get method) for each attribute it wishes to expose. 

Every method call made to the business service object, be it an entity bean or a session bean,
is potentially remote. Thus, in an EJB application such remote invocations use the network
layer regardless of the proximity of the client to the bean, creating a network overhead. Enter-
prise bean method calls may permeate the network layers of the system even if the client and the
EJB container holding the entity bean are both running in the same JVM, OS, or physical
machine. Some vendors may implement mechanisms to reduce this overhead by using a more
direct access approach and bypassing the network. 

As the usage of these remote methods increases, application performance can significantly
degrade. Therefore, using multiple calls to get methods that return single attribute values is inef-
ficient for obtaining data values from an enterprise bean.

Forces 
• All access to an enterprise bean is performed via remote interfaces to the bean. Every call

to an enterprise bean is potentially a remote method call with network overhead.
• Typically, applications have a greater frequency of read transactions than update transac-

tions. The client requires the data from the business tier for presentation, display, and
other read-only types of processing. The client updates the data in the business tier much
less frequently than it reads the data. 

• The client usually requires values for more than one attribute or dependent object from
an enterprise bean. Thus, the client may invoke multiple remote calls to obtain the
required data. 

• The number of calls made by the client to the enterprise bean impacts network perfor-
mance. Chattier applications—those with increased traffic between client and server
tiers—often degrade network performance. 

Solution 
Use a Value Object to encapsulate the business data. A single method call is used to send
and retrieve the value object. When the client requests the enterprise bean for the business
data, the enterprise bean can construct the value object, populate it with its attribute val-
ues, and pass it by value to the client. 



Clients usually require more than one value from an enterprise bean. To reduce the number of
remote calls and to avoid the associated overhead, it is best to use value objects to transport the
data from the enterprise bean to its client.

When an enterprise bean uses a value object, the client makes a single remote method invo-
cation to the enterprise bean to request the value object instead of numerous remote method
calls to get individual attribute values. The enterprise bean then constructs a new value object
instance, copies values into the object and returns it to the client. The client receives the value
object and can then invoke accessor (or getter) methods on the value object to get the individual
attribute values from the value object. Or, the implementation of the value object may be such
that it makes all attributes public. Because the value object is passed by value to the client, all
calls to the value object instance are local calls instead of remote method invocations.

Structure 
Figure 1.1 shows the class diagram that represents the Value Object pattern in its simplest form.

 

Figure 1.1 Value Object class diagram.

As shown in this class diagram, the value object is constructed on demand by the enterprise
bean and returned to the remote client. However, the Value Object pattern can adopt various
strategies, depending on requirements. The “Strategies” section explains these approaches. 

Participants and Responsibilities 
Figure 1.2 contains the sequence diagram that shows the interactions for the Value Object pat-
tern. 



Figure 1.2 Value Object sequence diagram.

Client 
This represents the client of the enterprise bean. The client can be an end-user application, as in
the case of a rich client application that has been designed to directly access the enterprise
beans. The client can be Business Delegates (see “Business Delegate” on page 248) or a differ-
ent BusinessObject.

BusinessObject 
The BusinessObject represents a role in this pattern that can be fulfilled by a session bean, an
entity bean, or a Data Access Object (DAO). The BusinessObject is responsible for creating the
value object and returning it to the client upon request. The BusinessObject may also receive
data from the client in the form of a value object and use that data to perform an update. 

ValueObject 
The ValueObject is an arbitrary serializable Java object referred to as a value object. A value object class 
may provide a constructor that accepts all the required attributes to create the value object. The constructor 
may accept all entity bean attribute values that the value object is designed to hold. Typically, the members 
in the value object are defined as public, thus eliminating the need for get and set methods. If some protec-
tion is necessary, then the members could be defined as protected or private, and methods are provided to 
get the values. By offering no methods to set the values, a value object is protected from modification after 
its creation. If only a few members are allowed to be modified to facilitate updates, then methods to set the 
values can be provided. Thus, the value object creation varies depending on an application’s requirements. 



It is a design choice as to whether the value object’s attributes are private and accessed via getters and set-
ters, or all the attributes are made public. 


