
Session Facade

Context
Enterprise beans encapsulate business logic and business data and expose their interfaces, and
thus the complexity of the distributed services, to the client tier.

Problem
In a multitiered J2EE application environment, the following problems arise:

• Tight coupling, which leads to direct dependence between clients and business objects;
• Too many method invocations between client and server, leading to network perfor-

mance problems;
• Lack of a uniform client access strategy, exposing business objects to misuse.
A multitiered J2EE application has numerous server-side objects that are implemented as

enterprise beans. In addition, some other arbitrary objects may provide services, data, or both.
These objects are collectively referred to as business objects, since they encapsulate business
data and business logic. 

J2EE applications implement business objects that provide processing services as session
beans. Coarse-grained business objects that represent an object view of persistent storage and
are shared by multiple users are usually implemented as entity beans.

Application clients need access to business objects to fulfill their responsibilities and to meet
user requirements. Clients can directly interact with these business objects because they expose
their interfaces. When you expose business objects to the client, the client must understand and
be responsible for the business data object relationships, and must be able to handle business
process flow. 

However, direct interaction between the client and the business objects leads to tight cou-
pling between the two, and such tight coupling makes the client directly dependent on the
implementation of the business objects. Direct dependence means that the client must represent
and implement the complex interactions regarding business object lookups and creations, and
must manage the relationships between the participating business objects as well as understand
the responsibility of transaction demarcation. 

As client requirements increase, the complexity of interaction between various business
objects increases. The client grows larger and more complex to fulfill these requirements. The
client becomes very susceptible to changes in the business object layer; in addition, the client is
unnecessarily exposed to the underlying complexity of the system. 

Tight coupling between objects also results when objects manage their relationship within
themselves. Often, it is not clear where the relationship is managed. This leads to complex rela-
tionships between business objects and rigidity in the application. Such lack of flexibility makes
the application less manageable when changes are required.

When accessing the enterprise beans, clients interact with remote objects. Network perfor-
mance problems may result if the client directly interacts with all the participating business
objects. When invoking enterprise beans, every client invocation is potentially a remote method
call. Each access to the business object is relatively fine-grained. As the number of participants
increases in a scenario, the number of such remote method calls increases. As the number of
remote method calls increases, the chattiness between the client and the server-side business
objects increases. This may result in network performance degradation for the application,
because the high volume of remote method calls increases the amount of interaction across the
network layer. 



A problem also arises when a client interacts directly with the business objects. Since the
business objects are directly exposed to the clients, there is no unified strategy for accessing the
business objects. Without such a uniform client access strategy, the business objects are
exposed to clients and may reduce consistent usage.

Forces 
• Provide a simpler interface to the clients by hiding all the complex interactions between

business components. 
• Reduce the number of business objects that are exposed to the client across the service

layer over the network. 
• Hide from the client the underlying interactions and interdependencies between business

components. This provides better manageability, centralization of interactions (responsi-
bility), greater flexibility, and greater ability to cope with changes. 

• Provide a uniform coarse-grained service layer to separate business object implementa-
tion from business service abstraction. 

• Avoid exposing the underlying business objects directly to the client to keep tight cou-
pling between the two tiers to a minimum. 

Solution
Use a session bean as a facade to encapsulate the complexity of interactions between the
business objects participating in a workflow. The Session Facade manages the business
objects, and provides a uniform coarse-grained service access layer to clients. 

The Session Facade abstracts the underlying business object interactions and provides a ser-
vice layer that exposes only the required interfaces. Thus, it hides from the client’s view the
complex interactions between the participants. The Session Facade manages the interactions
between the business data and business service objects that participate in the workflow, and it
encapsulates the business logic associated with the requirements. Thus, the session bean (repre-
senting the Session Facade) manages the relationships between business objects. The session
bean also manages the life cycle of these participants by creating, locating (looking up), modi-
fying, and deleting them as required by the workflow. In a complex application, the Session
Facade may delegate this lifestyle management to a separate object. For example, to manage the
lifestyle of participant session and entity beans, the Session Facade may delegate that work to a
Service Locator object. 

It is important to examine the relationship between business objects. Some relationships
between business objects are transient, which means that the relationship is applicable to only
that interaction or scenario. Other relationships may be more permanent. Transient relationships
are best modeled as workflow in a facade, where the facade manages the relationships between
the business objects. Permanent relationships between two business objects should be studied to
determine which business object (if not both objects) maintains the relationship.

Use Cases and Session Facades



Structure 
Figure 1.1 shows the class diagram representing the Session Facade pattern.

Figure 1.1 Session Facade class diagram.

Participants and Collaborations 
Figure 1.2 contains the sequence diagram that shows the interactions of a Session Facade with
two entity beans, one session bean, and a DAO, all acting as participants in fulfilling the request
from the client.

So, how do you identify the Session Facades through studying use
cases? Mapping every use case to a Session Facade will result in too many
Session Facades. This defeats the intention of having fewer coarse-grained
session beans. Instead, as you derive the Session Facades during your mod-
eling, look to consolidate them into fewer numbers of session beans based
on some logical partitioning. 

For example, for a banking application, you may group the interactions
related to managing an account into a single facade. The use cases Create
New Account, Change Account Information, View Account information,
and so on all deal with the coarse-grained entity object Account. Creating a
session bean facade for each use case is not recommended. Thus, the func-
tions required to support these related use cases could be grouped into a sin-
gle Session Facade called AccountSessionFacade.

In this case, the Session Facade will become a highly coarse-grained
controller with high-level methods that can facilitate each interaction (that
is, createNewAccount, changeAccount, getAccount). There-
fore, we recommend that you design Session Facades to aggregate a group
of the related interactions into a single Session Facade. This results in fewer
Session Facades for the application, and leverages the benefits of the Ses-
sion Facade pattern.



Figure 1.2 Session Facade sequence diagram.

Client
This represents the client of the Session Facade, which needs access to the business service.
This client can be another session bean (Session Facade) in the same business tier or a business
delegate in another tier.

SessionFacade
The SessionFacade is implemented as a session bean. The SessionFacade manages the relation-
ships between numerous BusinessObjects and provides a higher level abstraction to the client.
The SessionFacade offers coarse-grained access to the participating BusinessObject represented
by the Invoke invocation to the session bean. 

BusinessObject 
The BusinessObject is a role object that facilitates applying different strategies, such as session
beans entity beans and a DAO (see the next section, “Strategies”). A BusinessObject provides
data and/or some service in the class diagram. The SessionFacade interacts with multiple Busi-
nessObject instances to provide the service. 


