Composite Entity

Context

Entity beans are not intended to represent every persistent abject in the object model. Entity
beans are better suited for coarse-grained persistent business objects.

Problem

In a J2EE application, clients (applications, JSPs, servlets, JavaBeans) access entity beans via
their remote interfaces. Thus, every client invocation potentially routes through network stubs
and skeletons, even if the client and the enterprise bean are in the same VM, OS, or machine.
When entity beans are fine-grained objects, clients tend to invoke more individual entity bean
methods, resulting in high network overhead.

Entity beans represent distributed persistent business objects. Whether devel oping or migrat-
ing an application to the J2EE platform, object granularity is very important when deciding
what to implement as an entity bean. Entity beans should represent coarse-grained business
objects, such as those that provide complex behavior beyond simply getting and setting field
values. These coarse-grained objects typically have dependent objects. A dependent object isan
object that has no real domain meaning when not associated with its coarse-grained parent.

A recurring problem is the direct mapping of the object model to an EJB model (specifically
entity beans). This creates a relationship between the entity bean objects without consideration
of coarse-grained versus fine-grained (or dependent) objects. Determining what to make coarse-
grained versus fine-grained is typically difficult and can best be done viamodeling relationships
in Unified Modeling Language (UML) models.

There are a number of areasimpacted by the fine-grained entity bean design approach:

» Entity Relationships—Directly mapping an object model to an EJB model does not take
into account the impact of relationships between the objects. The inter-object relation-
ships are directly transformed into inter-entity bean relationships. As a result, an entity
bean might contain or hold a remote reference to another entity bean. However, main-
taining remote references to distributed objects involves different techniques and seman-
tics than maintaining references to local objects. Besides increasing the complexity of
the code, it reduces flexibility, because the entity bean must change if there are any
changesin its relationships.

Also, there is no guarantee as to the validity of the entity bean references to other entity
beans over time. Such references are established dynamically using the entity’s home
object and the primary key for that entity bean instance. Thisimplies a high maintenance
overhead of reference validity checking for each such entity-bean-to-entity-bean refer-
ence.

* Manageability—Implementing fine-grained objects as entity beans results in a large
number of entity beans in the system. An entity bean is defined using several classes. For
each entity bean component, the devel oper must provide classes for the home interface,
the remote interface, the bean implementation, and the primary key.

In addition, the container may generate classes to support the entity bean implementa-
tion. When the bean is created, these classes are realized as real objects in the container.
In short, the container creates a number of objects to support each entity bean instance.
Large numbers of entity beans result in more classes and code to maintain for the devel-
opment team. It also resultsin alarge number of objectsin the container. This can nega-
tively impact the application performance.

Forces

Network Performance—Fine-grained entity beans potentially have more inter-entity
bean relationships. Entity beans are distributed objects. When one entity bean invokes a
method on another entity bean, the call is potentially treated as a remote call by the con-
tainer, even if both entity beans are in the same container or JVM. If the number of
entity-bean-to-entity-bean relationships increases, then this decreases system scalability
due to heavy network overhead.

Database Schema Dependency—When the entity beans are fine-grained, each entity
bean instance usually represents a single row in a database. Thisis not a proper applica-
tion of the entity bean design, since entity beans are more suitable for coarse-grained
components. Fine-grained entity bean implementation typically is a direct representation
of the underlying database schemain the entity bean design. When clients use these fine-
grained entity beans, they are essentially operating at the row level in the database, since
each entity bean is effectively a single row. Because the entity bean directly models a
single database row, the clients become dependent on the database schema. When the
schema changes, the entity bean definitions must change as well. Further, since the cli-
ents are operating at the same granularity, they must observe and react to this change.
This schema dependency causes a loss of flexibility and increases the maintenance over-
head whenever schema changes are required.

Object Granularity (Coarse-Grained versus Fine-Grained)—Object granularity
impacts data transfer between the enterprise bean and the client. In most applications, cli-
ents typically need a larger chunk of data than one or two rows from atable. In such a
case, implementing each of these fine-grained objects as an entity bean means that the
client would have to manage the relationships between all these fine-grained objects.
Depending on the data requirements, the client might have to perform many lookups of a
number of entity beans to obtain the required information.

Entity beans are best implemented as coarse-grained objects due to the high overhead
associated with each entity bean. Each entity bean is implemented using several objects,
such as EJB home object, remote object, bean implementation, and primary key, and
each is managed by the container services.

Applications that directly map relational database schema to entity beans (where each
row in atable is represented by an entity bean instance) tend to have a large number of
fine-grained entity beans. It is desirable to keep the entity beans coarse-grained and
reduce the number of entity beansin the application.

Direct mapping of object model to EJB model yields fine-grained entity beans. Fine-
grained entity beans usually map to the database schema. This entity-to-database row
mapping causes problems related to performance, manageability, security, and transac-
tion handling. Relationships between tables are implemented as relationships between
entity beans, which means that entity beans hold references to other entity beans to
implement the fine-grained relationships. It is very expensive to manage inter-entity bean
relationships, because these relationships must be established dynamically, using the
entity home objects and the enterprise beans' primary keys.

Clients do not need to know the implementation of the database schema to use and sup-
port the entity beans. With fine-grained entity beans, the mapping is usually done so that
each entity bean instance maps to a single row in the database. This fine-grained map-
ping creates a dependency between the client and the underlying database schema, since
the clients deal with the fine-grained beans and they are essentially a direct representa-
tion of the underlying schema. This results in tight coupling between the database
schema and entity beans. A change to the schema causes a corresponding change to the
entity bean, and in addition requires a corresponding change to the clients.

» Thereisanincrease in chattiness of applications due to intercommunication among fine-
grained entity beans. Excessive inter-entity bean communication often leads to a perfor-
mance bottleneck. Every method call to the entity bean is made via the network layer,
even if the caller isin the same address space as the called bean (that is, both the client,
or caller entity bean, and the called entity bean are in the same container). While some
container vendors optimize for this scenario, the developer cannot rely on this optimiza-
tionin all containers.

» Additional chattiness can be observed between the client and the entity beans because the
client may have to communicate with many fine-grained entity beans to fulfill arequire-
ment. It is desirable to reduce the communication between or among entity beans and to
reduce the chattiness between the client and the entity bean layer.

Solution

Use Composite Entity to model, represent, and manage a set of interrelated persistent
objectsrather than representing them asindividual fine-grained entity beans. A Compos-
ite Entity bean represents a graph of objects.

In order to understand this solution, let us first define what is meant by persistent objects and
discusstheir relationships.

A persistent object is an object that is stored in some type of data store. Multiple clients usu-
ally share persistent objects. Persistent objects can be classified into two types: coarse-grained
objects and dependent objects.

A coarse-grained object is self-sufficient. It has its own life cycle and manages its relation-
ships to other objects. Each coarse-grained object may reference or contain one or more other
objects. The coarse-grained object usually manages the lifestyles of these objects. Hence, these
objects are called dependent objects. A dependent object can be a simple self-contained object
or may in turn contain other dependent objects.

The life cycle of a dependent object is tightly coupled to the life cycle of the coarse-grained
object. A client may only indirectly access a dependent object through the coarse-grained
object. That is, dependent objects are not directly exposed to clients because their parent
(coarse-grained) object manages them. Dependent objects cannot exist by themselves. Instead,
they always need to have their coarse-grained (or parent) object to justify their existence.

Typically, you can view the relationship between a coarse-grained object and its dependent
objects as atree. The coarse-grained object is the root of the tree (the root node). Each depen-
dent object can be a standalone dependent object (a leaf node) that is a child of the coarse-
grained object. Or, the dependent object can have parent-child relationships with other depen-
dent objects, in which caseit is considered a branch node.

A Composite Entity bean can represent a coarse-grained object and all its related dependent
objects. Aggregation combines interrelated persistent objects into a single entity bean, thus
drastically reducing the number of entity beans required by the application. This leads to a
highly coarse-grained entity bean that can better leverage the benefits of entity beans than can
fine-grained entity beans.

Without the Composite Entity approach, there is atendency to view each coarse-grained and
dependent object as a separate entity bean, leading to alarge number of entity beans.

Structure

While there are many strategies in implementing the Composite Entity pattern, the first one we
discuss is represented by the class diagram in Figure 1.1. Here the Composite Entity contains
the coarse-grained object, and the coarse-grained object contains dependent objects.

ol n‘tltyiE.J Elb.b . CoarseGrainedObject
CompositeEntity contains -

4

containg
0.
Dependentobject |
|
1
contaings

Figure 1.1 Composite Entity class diagram.

The sequence diagram in Figure 1.2 shows the interactions for this pattern.

(gt RS || ST LY Coarscoraetimect | (DenendentOhiect] 'Dﬁamdgmmm enendemObiect
ompas et ity

|
| |
|

i

L i P T
=T Gati oel Dai

I
|
|
e |

199 Geli Bt Tiats

112 Gied | et Cata . ”
1121 Geli Satat

Figure 1.2 Composite Entity sequence diagram.
Participants and Responsibilities

CompositeEntity

CompositeEntity is the coarse-grained entity bean. The CompositeEntity may be the coarse-
grained object, or it may hold areference to the coarse-grained object.

Coarse-Grained Object

A coarse-grained object is an object that has its own life cycle and manages its own relationships to
other objects. A coarse-grained object can be a Java object contained in the Composite Entity. Or,
the Composite Entity itself can be the coarse-grained object that holds dependent objects. These
strategies are explained in the “ Strategies’ section.

DependentObjectl, DependentObject2, and DependentObject3

A dependent object is an object that depends on the coarse-grained object and hasits life cycle
managed by the coarse-grained object. A dependent object can contain other dependent objects;
thus there may be atree of objects within the Composite Entity.

