Query Flocks: A Generalization of Association-Rule Mining

CS 33510: Data Mining
Svetlozar Nestorov

Outline

• So far, we studied how to mine association rules from market-basket data.
 – AIS, Apriori, AprioriTID
 – Different implementations
• Can we generalize these techniques to arbitrary relations?
• Query Flocks!
• Market baskets as a query flock.
• Query flock plans.
• Searching for the optimal plan.

Problem Motivation

• Large amounts of data
 – stored in relational DBMS (data marts, data warehouses)
• Need to perform complex data analysis: ad-hoc, on-line data mining
• Currently, specialized, efficient algorithms for a small class of problems
 – at best, loosely coupled with RDBMS

Query Flocks

• Programming tool that enables efficient, ad-hoc, on-line data mining
• With conventional RDBMS
 – transform complex query into a sequence of simpler, optimizable queries
• As a part of next-generation optimizers
 – new query optimization technique, e.g., generalization of the ‘a priori’ technique

Query Flocks Features

• Tightly-coupled integration
 – all query processing performed at DBMS
 – external query optimization
 – full use of DBMS features
 • recovery, concurrency control
• Main challenge: performance

Tightly-Coupled Architecture
Query Flocks Definition

- Parameterized query with implicit aggregation and a filter condition
 - nonrecursive datalog program with parameters
 \[\text{answer}(P) :- \text{baskets}(B,$1) \]
 - arithmetic condition with aggregate functions
 \[\text{COUNT}(\text{answer}.P) \geq 20 \]

Query Flock Example

- \text{Relation} \ \text{exhibits}(\text{Patient}, \text{Symptom})
- Query Flock (about $1 and $2):
 \[
 \begin{align*}
 \text{Query:} & \quad \text{answer}(P) :- \text{exhibits}(P,$1) \ \text{AND} \ \text{exhibits}(P,$2) \ \text{AND} \ \$1<\$2 \\
 \text{Filter:} & \quad \text{COUNT}(\text{answer}.P) \geq \ c \quad \text{(support)}
 \end{align*}
 \]

Query Flocks Explained

- A query flock is about its \textbf{parameters}
- Generate-and-test paradigm:
 - pick parameters: \textit{cough} and \textit{fever}
- \textit{If filter condition} is satisfied add \textit{(cough, fever)} to query flock result
- Why the name “flocks”?

Query Flock Result

- Relation \textbf{over its parameters} that meet the filter condition

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>cough</td>
<td>fever</td>
</tr>
<tr>
<td>fever</td>
<td>headache</td>
</tr>
<tr>
<td>headache</td>
<td>insomnia</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Market Basket Problem

- Supermarket checkout data
- Find all pairs of items \textit{frequently} bought together (in the same basket)
- Success based on
 - appropriateness of purpose
 - new optimization tricks: ‘a priori’

Market Baskets as a Query Flock

- \text{Relation} \ \text{baskets}(BID,Item)
- Query Flock:
 \[
 \begin{align*}
 \text{Query:} & \quad \text{answer}(B) :- \text{baskets}(B,$1) \\
 & \quad \text{AND} \ \text{baskets}(B,$2) \\
 \text{Filter:} & \quad \text{COUNT}(\text{answer}.B) \geq \ c
 \end{align*}
 \]
Market Baskets in SQL

• Not optimized effectively in RDBMS

```
SELECT B1.Item, B2.Item
FROM baskets B1, baskets B2
WHERE B1.Item < B2.Item AND
B1.BID = B2.BID
GROUP BY B1.Item, B2.Item
HAVING c <= COUNT(DISTINCT B1.BID)
```

The ‘A Priori’ Technique

• A pair of items is frequent only if each item is frequent
• Reduce the number of potentially frequent pairs by first finding all frequent items

```
INSERT INTO ok
SELECT Item
FROM baskets
GROUP BY Item
HAVING c <= COUNT(DISTINCT BID)
```

Market Baskets with ‘A Priori’

```
SELECT B1.item, B2.item
FROM Baskets B1,Baskets B2,
ok T1,ok T2
WHERE B1.item < B2.item
AND B1.item = T1.item
AND B2.item = T2.item
AND B1.BID = B2.BID
GROUP BY B1.item, B2.item
HAVING 20 <= COUNT(DISTICT B1.BID)
```

‘A Priori’ for Query Flocks

• Create auxiliary relations, as results of query flocks, that limit the values for some subsets of the parameters
 – safe subqueries of the original query; same filter

Query: answer(B) :- baskets(B,$1)
AND baskets(B,$2)
Filter: COUNT(answer.B) >= c

Larger Example: Side Effects

• Relations
diagnoses(Patient, Disease)
exhibits(Patient, Symptom)
treatments(Patient, Medicine)
causes(Disease, Symptoms)
• Find possible side effects of medicines

Side-Effect Query Flock

Query:
answer(P) :- diagnoses(P,D)
AND exhibits(P,$s)
AND treatments(P,$m)
AND NOT causes(D,$s)
Filter:
COUNT(answer.P) >= 20
Some Safe Subqueries

- answer(P) :- treatments(P,$m)
- answer(P) :- exhibits(P,$s)
- answer(P) :- diagnoses(P,D) AND exhibits(P,$s) AND NOT causes(D,$s)
- answer(P) :- exhibits(P,$s) AND treatments(P,$m)

Side Effects in SQL

```sql
select E.Symptom, T.Medicine
from diagnoses D, exhibits E, treatments T
where D.Patient = E.Patient
and D.Patient = T.Patient
and E.Symptom not in (select C.Symptom
from causes C
where C.Disease = D.Disease)
having count (distinct P) >= 20
group by E.Symptom, T.Medicine
```

Processing Flocks Efficiently

- Direct translation is too slow.
- Solution: Query Flock Plans
 - serve as an external optimizer.
 - transform complex flock into an equivalent sequence of simpler steps.
 - each step can be processed efficiently at the underlying DBMS.
 - all data processing done at DBMS.

Query Flock Plan Definition

- A sequence of query flocks
- Each flock defines an auxiliary relation
- Each flock has the same filter
- Each flock is derived from the original by
 - adding zero or more auxiliary relations
 - choosing safe subquery
- Final step: original query + auxiliary relations

Query Flock Plan: Limit parameters

- Step 1: Create auxiliary relation okM
 Query: `answer(P) :- treatments(P,$m)`
 Filter: `COUNT(answer.P) >= 20`

- Step 2: Create auxiliary relation okS1
 Query: `answer(P) :- exhibits(P,$s)`
 Filter: `COUNT(answer.P) >= 20`

- Step 3: Create auxiliary relation okS2
 Query: `answer(P) :- okS1($s)
 AND diagnoses(P,D)
 AND exhibits(P,$s)
 AND NOT causes(D,$s)
 Filter: `COUNT(answer.P) >= 20`
Query Flock Plan: Final Step

- Step 4: Final query appears to be harder but okS2 and okM can reduce the size of the intermediate results during the join.

```
Query: answer(P) :- diagnoses(P,D)
AND okM($m) AND okS2($s)
AND exhibits(P,$s)
AND treatments(P,$m)
AND NOT causes(D,$s)
```

```
Filter: COUNT(answer.P) >= 20
```

In Reality...

- Current DB optimizers not nearly smart enough.
- The shapes of the query plans are limited.
- Solution: do it yourself!
- Break up the queries even further.

Query Flock Plans Improved

- Two types of steps:
 - limit parameters (auxiliary relations)
    ```
    ok_m($m) :
    answer(P) :- treatments(P,$m)
    COUNT(answer.P) >= 20
    ```
 - reduce base relations
    ```
    t_1(P,$m) :- treatments(P,$m)
    AND ok_m($m)
    ```

Auxiliary Relations

```
ok_m($m)
project π$m
select σSup >= 20
aggregate δ$m, count(P) as Sup
treatments($m)
```

Generating Flock Plans

- Levelwise, rule-based algorithm
 - at each level k, two phases
 A: materialize auxiliary relations (sets of k params)
 B: reduce base relations
- Heuristics employed
 - take advantage of symmetry
 - smallest safe subqueries

Example Query Flock Plan
Direct Plan (in Oracle)

```
diagnoses(P,D)
treatments(P,$m)
exhibits(P,$s)
not causes(D,$s)
auxs,$s
```

Why Is It Worthwhile?

- Flock plan appears more complex: 7 queries, final join of 5 relations, but:
 - first 6 queries are simple
 - final join is faster
 - smaller relations (base relation reductions)
 - smaller intermediate results (auxiliary relations)

Why Is It Worthwhile?

- Flock plan appears more complex: 7 queries, final join of 5 relations, but:
 - first 6 queries are simple
 - final join is faster
 - smaller relations (base relation reductions)
 - smaller intermediate results (auxiliary relations)

Performance: Medical Data

![Performance Graph]

Association-Rule Flavors

- Quantitative association rules
- Generalized association rules
- Multi-level association rules
- Extended association rules
- Generalized extended association rules

Flocks and Stars

- Most data warehouses are built using star schemas (dimensional modeling.)
- Extended association rules take advantage of all dimensions (not just products)
- Can be expressed as query flocks!
- Example

Conclusions

- Tightly-coupled integration of data mining and DBMS is possible
 - external query optimization
- Leverages database technology
- Enables ad-hoc, on-line data mining