CMSC 235 Midterm Solutions

Problem 1:

(a) The relational schema consists of the following 5 relations:

```
A(\underline{a},b,\underline{c})
B(\underline{c},d)
C(\underline{e},\underline{f})
S(\underline{c},e,f)
T(\underline{a},\underline{c},e,f)
```

(b) The following FDs hold:

```
For A: ac \rightarrow b;
For B: c \rightarrow d;
For C: none;
For S: c \rightarrow ef, ef \rightarrow c;
For T ac \rightarrow ef;
```

Problem 2:

- (a) The only key for R is AE.
- (b) $CE \rightarrow D$ does not necessarily hold in R.
- (c) BE \rightarrow C holds in S and does not violate the BCNF condition for S.

Problem 3:

- (a) SELECT MAX(A) FROM R
- (b) SELECT A, MAX(B)
 FROM R
 GROUP BY A

Problem 4:

- (a) No. The schemas are different.
- (b) Yes.
- (c) No. The first query will select R.A as many times as there are tuples in S with attribute B that equals R.B, whereas the second query will select each such R.A only once.
- (d) Yes. By definition DISTINCT will eliminate duplicates. Intersecting a relation with itself has the same effect because the result of INTERSECT is a set.
- (e) Yes. Grouping by all attributes is equivalent to eliminating duplicates.

Problem 5:

The only two tuples that must be in R are: (0,1,4) and (0,3,2).

Problem 6:

The trigger will not allow the price of any book to be changed to a number greater than the number of pages in the book. If such change is attempted, the trigger sets the price to the number of pages.

Problem 7:

- (a) No. The system will not check the attribute constraint on attribute d of S since the operation is a deletion form T.
- (b) Yes. The referential integrity for attribute d of S will be violated; tuple (3,5) of S will not have a tuple from T to refer to via its attribute d.
- (c) Yes. The primary key constraint is violated. There is already a tuple with attribute c = 1.
- (d) No.
- (e) Yes. The referential integrity for attribute d of S will be violated. Also the attribute check constraint on d will be violated.

Extra credit:

120 orders. There are two constraints on the order of deletions:

1. (1,0) of T must be deleted after (1,1) and (2,1) of S are deleted.

2. (5,3) of T must be deleted after (3,5) of S is deleted.

So, there are 20 ways in which we can order the 5 tuples mentioned above subject to the two constraints. Adding the six tuple increases the number of orders by a factor of 6. So, the total number is 120.