
1

CS 235:
Introduction to Databases

Svetlozar Nestorov

Lecture Notes #26

Outline

• XML Query Languages
– XPATH
– XQUERY

XPATH and XQUERY

• XPATH is a language for describing paths
in XML documents.
– Really think of the semistructured data graph

and its paths.

• XQUERY is a full query language for XML
documents.

Example DTD

<!DOCTYPE Bars [
<!ELEMENT BARS (BAR*, BEER*)>
<!ELEMENT BAR (PRICE+)>

<!ATTLIST BAR name = ID>
<!ELEMENT PRICE (#PCDATA)>

<!ATTLIST PRICE theBeer = IDREF>
<!ELEMENT BEER ()>

<!ATTLIST BEER name = ID, soldBy = IDREFS>
]>

Example Document

<BARS>
<BAR name = “JoesBar”>

<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> …
<BEER name = “Bud”, soldBy = “JoesBar,

SuesBar,…”>
</BEER> …

</BARS>

Path Descriptors

• Simple path descriptors are sequences of
tags separated by slashes (/).

• If the descriptor begins with /, then the
path starts at the root and has those tags,
in order.

• If the descriptor begins with //, then the
path can start anywhere.

2

Example: /BARS/BAR/PRICE

<BARS>
<BAR name = “JoesBar”>

<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> …
<BEER name = “Bud”, soldBy = “JoesBar,

SuesBar,…”>
</BEER> …

</BARS>

/BARS/BAR/PRICE describes the
set with these two PRICE objects
as well as the PRICE objects for
any other bars.

Example: //PRICE

<BARS>
<BAR name = “JoesBar”>

<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> …
<BEER name = “Bud”, soldBy = “JoesBar,

SuesBar,…”>
</BEER> …

</BARS>

//PRICE describes the same PRICE
objects, but only because the DTD
forces every PRICE to appear within
a BARS and a BAR.

Wild-Card *

• A star (*) in place of a tag represents any
one tag.

• Example: /*/*/PRICE represents all price
objects at the third level of nesting.

Example: /BARS/*

<BARS>
<BAR name = “JoesBar”>

<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> …
<BEER name = “Bud”, soldBy = “JoesBar,

SuesBar,…”>
</BEER> …

</BARS>
/BARS/* captures all BAR
and BEER objects, such
as these.

Attributes

• In XPATH, we refer to attributes by
prepending @ to their name.

• Attributes of a tag may appear in paths as
if they were nested within that tag.

Example: /BARS/*/@name

<BARS>
<BAR name = “JoesBar”>

<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> …
<BEER name = “Bud”, soldBy = “JoesBar,

SuesBar,…”>
</BEER> …

</BARS>

/BARS/*/@name selects all
name attributes of immediate
subobjects of the BARS object.

3

Selection Conditions

• A condition inside […] may follow a tag.
• If so, then only paths that have that tag

and also satisfy the condition are included
in the result of a path expression.

Example: Selection Condition

• /BARS/BAR/PRICE[PRICE < 2.75]
<BARS>

<BAR name = “JoesBar”>
<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> …
The condition that the PRICE be
< $2.75 makes this price but not
the Miller price satisfy the path
descriptor.

Example: Attribute in Selection

• /BARS/BAR/PRICE[@theBeer = “Miller”]
<BARS>

<BAR name = “JoesBar”>
<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> …
Now, this PRICE object is
selected, along with any
other prices for Miller.

Axes

• In general, path expressions allow us to
start at the root and execute a sequence
of steps to find a set of nodes at each
step.

• At each step, we may follow any one of
several axes.

• The default axis is child:: --- go to any
child of the current set of nodes.

Example: Axes

• /BARS/BEER is really shorthand for
/BARS/child::BEER .

• @ is really shorthand for the attribute::
axis.
– Thus, /BARS/BEER[@name = “Bud”] is

shorthand for
/BARS/BEER[attribute::name = “Bud”]

More Axes

• Some other useful axes are:
1. parent:: = parent(s) of the current node(s).
2. descendant-or-self:: = the current node(s)

and all descendants.
Note: // is really a shorthand for this axis.

3. ancestor::, ancestor-or-self, etc.

4

XQUERY

• XQUERY allows us to query XML
documents, using path expressions from
XPATH to describe important sets.

• Corresponding to SQL’s select-from-where
is the XQUERY FLWR expression, standing
for “for-let-where-return.”

FLWR Expressions

1. One or more FOR and/or LET clauses.
2. Then an optional WHERE clause.
3. A RETURN clause.

FOR Clauses

FOR <variable> IN <path expression>,…
• Variables begin with $.
• A FOR variable takes on each object in the

set denoted by the path expression, in
turn.

• Whatever follows this FOR is executed
once for each value of the variable.

Example: FOR

FOR $beer IN /BARS/BEER/@name
RETURN

<BEERNAME>$beer</BEERNAME>
• $beer ranges over the name attributes

of all beers in our example document.
• Result is a list of tagged names, like

<BEERNAME>Bud</BEERNAME>
<BEERNAME>Miller</BEERNAME>…

LET Clauses

LET <variable> := <path expression>,…
• Value of the variable becomes the set of

objects defined by the path expression.
• Note LET does not cause iteration; FOR

does.

Example: LET

LET $beers := /BARS/BEER/@name
RETURN

<BEERNAMES>$beers</BEERNAMES>
• Returns one object with all the names of

the beers, like:
<BEERNAMES>Bud, Miller,…</BEERNAMES>

5

Following IDREF’s

• XQUERY (but not XPATH) allows us to use
paths that follow attributes that are
IDREF’s.

• If x denotes a set of IDREF’s, then
x =>y denotes all the objects with tag y
whose ID’s are one of these IDREF’s.

Example

• Find all the beer objects where the beer
is sold by Joe’s Bar for less than 3.00.

• Strategy:
1. $beer will for-loop over all beer objects.
2. For each $beer, let $joe be either the Joe’s-

Bar object, if Joe sells the beer, or the
empty set of bar objects.

3. Test whether $joe sells the beer for < 3.00.

Example: The Query

FOR $beer IN /BARS/BEER
LET $joe := $beer/@soldBy=>BAR[@name=“JoesBar”]
LET $joePrice := $joe/PRICE[@theBeer=$beer/@name]
WHERE $joePrice < 3.00
RETURN <CHEAPBEER>$beer</CHEAPBEER>

Attribute soldBy is of type
IDREFS. Follow each ref
to a BAR and check if its
name is Joe’s Bar.

Find that PRICE subobject
of the Joe’s Bar object that
represents whatever beer is
currently $beer.

Only pass the values of
$beer, $joe, $joePrice to
the RETURN clause if the
string inside the PRICE
object $joePrice is < 3.00

