
1

CS 235:
Introduction to Databases

Svetlozar Nestorov
Lecture Notes #25

Outline

• Semistructured Data
• XML: eXtensible Markup Language
• DTD: Document Type Definitions

Framework

1. Information Integration : Making
databases from various places work as
one.

2. Semistructured Data : A new data
model designed to cope with problems
of information integration.

3. XML : A standard language for
describing semistructured data,
schemas and representing data.

Information Integration Problem

• Related data exists in many places
and could, in principle, work together.

• But different databases differ in:
1. Model (relational, object-oriented?).
2. Schema (normalized/unnormalized?).
3. Terminology: are consultants employees?

Retirees? Subcontractors?
4. Conventions (meters versus feet?).

Example

• Every bar has a database.
– One may use a relational DBMS; another

keeps the menu in an MS-Word document.
– One stores the phones of distributors,

another does not.
– One distinguishes ales from other beers,

another doesn’t.
– One counts beer inventory by bottles,

another by cases.

Two Approaches to Integration

1. Warehousing : Make copies of the data
sources at a central site and transform it to
a common schema.

– Reconstruct data daily/weekly, but do not try to
keep it more up-to-date than that.

2. Mediation : Create a view of all sources, as
if they were integrated.

– Answer a view query by translating it to
terminology of the sources and querying them.

2

Warehouse Diagram

Warehouse

Wrapper Wrapper

Source 1 Source 2

A Mediator

Mediator

Wrapper Wrapper

Source 1 Source 2

User query

Query
Query

QueryQuery

Result

Result

Result

Result

Result

Semistructured Data

• Purpose: represent data from
independent sources more flexibly than
either relational or object-oriented
models.

• Think of objects, but with the type of
each object is local, not that of a global
“class.”

• Labels to indicate meaning of
substructures.

Graphs of Semistructured Data

• Nodes = objects.
• Labels on arcs (attributes, relationships).
• Atomic values at leaf nodes (nodes with

no arcs out).
• Flexibility: no restriction on:

– Labels out of a node.
– Number of successors with a given label.

Example: Data Graph

Bud

A.B.

Gold1995

MapleJoe’s

M’lob

beer beer
bar

manfmanf

servedAt

name

name
name

addr

prize

year award

root

XML

• XML = eXtensible Markup Language.
• While HTML uses tags for formatting (e.g.,

“italic”), XML uses tags for semantics
(e.g., “this is an address”).

• Key idea: create tag sets for a domain
(e.g., genomics), and translate all data
into properly tagged XML documents.

3

Well-Formed and Valid XML

• Well-Formed XML allows you to invent
your own tags.
– Similar to labels in semistructured data.

• Valid XML involves a DTD (Document Type
Definition), which limits the labels and
gives a grammar for their use.

Well-Formed XML

• Start the document with a declaration,
surrounded by <? … ?> .

• Normal declaration is:
<? XML VERSION = “1.0”
STANDALONE = “yes” ?>
– “Standalone” = “no DTD provided.”

• Balance of document is a root tag
surrounding nested tags.

Tags

• Tags, as in HTML, are normally matched
pairs, as <FOO> … </FOO> .

• Tags may be nested arbitrarily.
• Tags requiring no matching ender, like

<P> in HTML, are not permitted.

Example: Well-Formed XML
<? XML VERSION = “1.0” STANDALONE = “yes” ?>
<BARS>

<BAR><NAME>Joe’s Bar</NAME>
<BEER><NAME>Bud</NAME>

<PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME>

<PRICE>3.00</PRICE></BEER>
</BAR>
<BAR> … </BAR>

</BARS>

XML and Semistructured Data

• Well-Formed XML with nested tags is
exactly the same idea as trees of
semistructured data.

• We shall see that XML also enables non-
tree structures, as does the
semistructured data model.

Example

• The <BARS> XML document is:

Joe’s Bar

Bud 2.50 Miller 3.00

PRICE

BAR
BAR

BARS

NAME . . .

BAR

PRICENAME

BEER
BEER

NAME

4

Document Type Definitions

• Essentially a context-free grammar for
describing XML tags and their nesting.

• Each domain of interest (e.g., electronic
components, bars-beers-drinkers) creates
one DTD that describes all the documents
this group will share.

DTD Structure

<!DOCTYPE <root tag> [
<!ELEMENT <name> (<components>)

<more elements>
]>

DTD Elements

• The description of an element consists of
its name (tag), and a parenthesized
description of any nested tags.
– Includes order of subtags and their

multiplicity.

• Leaves (text elements) have #PCDATA in
place of nested tags.

Example: DTD

<!DOCTYPE Bars [
<!ELEMENT BARS (BAR*)>
<!ELEMENT BAR (NAME, BEER+)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT BEER (NAME, PRICE)>
<!ELEMENT PRICE (#PCDATA)>

]>

Element Descriptions

• Subtags must appear in order shown.
• A tag may be followed by a symbol to

indicate its multiplicity.
– * = zero or more.
– + = one or more.
– ? = zero or one.

• Symbol | can connect alternative
sequences of tags.

Example: Element Description

• A name is an optional title (e.g., “Prof.”),
a first name, and a last name, in that
order, or it is an IP address:

<!ELEMENT NAME (

(TITLE?, FIRST, LAST) | IPADDR

)>

5

Use of DTD’s

1. Set STANDALONE = “no”.
2. Either:

a) Include the DTD as a preamble of the XML
document, or

b) Follow DOCTYPE and the <root tag> by
SYSTEM and a path to the file where the
DTD can be found.

Example with DTD
<? XML VERSION = “1.0” STANDALONE = “no” ?>
<!DOCTYPE Bars [

<!ELEMENT BARS (BAR*)>
<!ELEMENT BAR (NAME, BEER+)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT BEER (NAME, PRICE)>
<!ELEMENT PRICE (#PCDATA)>

]>
<BARS>

<BAR><NAME>Joe’s Bar</NAME>
<BEER><NAME>Bud</NAME> <PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME> <PRICE>3.00</PRICE></BEER>

</BAR>
<BAR> …

</BARS>

Another Example with DTD

• Assume the BARS DTD is in file bar.dtd.
<? XML VERSION = “1.0” STANDALONE = “no” ?>
<!DOCTYPE Bars SYSTEM “bar.dtd”>
<BARS>

<BAR><NAME>Joe’s Bar</NAME>
<BEER><NAME>Bud</NAME>

<PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME>

<PRICE>3.00</PRICE></BEER>
</BAR>
<BAR> …

</BARS>

Attributes

• Opening tags in XML can have attributes,
like in HTML.

• In a DTD,
<!ATTLIST <element name>… >

gives a list of attributes and their
datatypes for this element.

Example: Attributes

• Bars can have an attribute kind, which is
either sushi, sports, or “other.”

<!ELEMENT BAR (NAME BEER*)>

<!ATTLIST BAR kind = “sushi” |

“sports” | “singles” |
“other”>

Example: Attribute Use

• In a document that allows BAR tags, we might
see:

<BAR kind = “sushi”>

<NAME>Kamehachi</NAME>

<BEER><NAME>Sapporo</NAME>

<PRICE>5.00</PRICE></BEER>

...

</BAR>

6

ID’s and IDREF’s

• These are pointers from one object to
another, in analogy to HTML’s
NAME = “foo” and HREF = “#foo”.

• Allows the structure of an XML document
to be a general graph, rather than just a
tree.

Creating ID’s

• Give an element E an attribute A of type
ID.

• When using tag <E > in an XML
document, give its attribute A a unique
value.

• Example:
<E A = “xyz”>

Creating IDREF’s

• To allow objects of type F to refer to
another object with an ID attribute, give F
an attribute of type IDREF.

• Or, let the attribute have type IDREFS, so
the F –object can refer to any number of
other objects.

Example: ID’s and IDREF’s

• Let’s redesign our BARS DTD to include both
BAR and BEER subelements.

• Both bars and beers will have ID attributes
called name.

• Bars have PRICE subobjects, consisting of a
number (the price of one beer) and an IDREF
theBeer leading to that beer.

• Beers have attribute soldBy, which is an
IDREFS leading to all the bars that sell it.

The DTD

<!DOCTYPE Bars [
<!ELEMENT BARS (BAR*, BEER*)>
<!ELEMENT BAR (PRICE+)>

<!ATTLIST BAR name = ID>
<!ELEMENT PRICE (#PCDATA)>

<!ATTLIST PRICE theBeer = IDREF>
<!ELEMENT BEER ()>

<!ATTLIST BEER name = ID, soldBy = IDREFS>
]>

Example XML Document

<BARS>
<BAR name = “JoesBar”>

<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> …
<BEER name = “Bud”, soldBy = “JoesBar,

SuesBar,…”>
</BEER> …

</BARS>

