
1

CS 235: 
Introduction to Databases

Svetlozar Nestorov
Lecture Notes #22

CS 235: Introduction to Databases 2

Outline

Physical organization of data on disk
Indexing (and SQL)
Indexing sequential files
• Primary, secondary
• Clustering, non-clustering
• Dense, sparse.
• Multi-level
Other indexing structures
• Linear, B-tree, hashing

CS 235: Introduction to Databases 3

Disk Surface

gapstracks

sectors

CS 235: Introduction to Databases 4

Sectors and Blocks

Sector: smallest physical unit of data 
transferred between disk and main 
memory.
Block: logical unit of data, consists of 
several consecutive sectors.
Databases deal with blocks.

CS 235: Introduction to Databases 5

Data Layout

Each block contains:
• Block header (meta data)
• Records (corresponding to tuples)

Each record contains:
• Record header
• Fields (attributes) 

CS 235: Introduction to Databases 6

Indexing

Get a particular record (or several records) 
given a value for some field.
• Read all blocks with records.
• Use an index to locate block(s) with record(s). 



2

CS 235: Introduction to Databases 7

Indexes in SQL

CREATE INDEX index_name
ON table(attr1, attr2,…);

CREATE INDEX bar_idx
ON Sells(bar);

Indexes can be included in the table 
declaration.  

CS 235: Introduction to Databases 8

MySQL Indexes

CREATE TABLE Sells(
bar varchar(20),
beer varchar(20),
price real,
INDEX (bar),
INDEX beerIdx (beer)

);

DROP INDEX beerIdx ON Sells;
SHOW INDEX FROM Sells;

CS 235: Introduction to Databases 9

Using Indexes: Selection

SELECT beer FROM Sells WHERE bar = ‘Level’;

SELECT price FROM Sells WHERE beer = ‘Bud’;

SELECT price FROM Sells WHERE beer = ‘Bud’ 
AND bar = ‘Rainbo’;

SELECT MAX(price) FROM Sells WHERE bar <> 
‘Cans’;

CS 235: Introduction to Databases 10

Using Indexes: Joins

SELECT beer 
FROM Sells AS S,  Frequents AS F
WHERE S.bar = F.bar AND drinker = ‘Sally’;

SELECT beer 
FROM Sells AS S,  Frequents AS F
WHERE S.bar = F.bar AND price < 10;

CS 235: Introduction to Databases 11

Indexing Sequential Files

Records stored in a sorted order
• often by primary key

Primary index 
• on a sorting field
• determines record location 

CS 235: Introduction to Databases 12

Clustering

Clustering index packs records with the 
same values of indexed attributes in as 
few blocks as possible
• Not necessarily sorted



3

CS 235: Introduction to Databases 13

Dense Indexes

Record pointer for each key value
Number of index entries = number of 
records
• Is it worth it?

Example
Block vs. Record pointers

CS 235: Introduction to Databases 14

Sparse Indexes

Index only the first record in a block.
Example.
Always better than dense indexes?
Records must be sorted.

CS 235: Introduction to Databases 15

Multiple Level Indexes

What if indexes occupy many blocks?
First-level index can be sparse or dense
Higher level indexes must be sparse.
Example.

CS 235: Introduction to Databases 16

Record Modifications

Deletion 
Insertion
Updates
Reorganization policy
• immediate
• postpone (overflow blocks)

Examples

CS 235: Introduction to Databases 17

Secondary Indexes

Records not sorted (in order of indexing 
field).
First level index must be dense.
Higher levels indexes can be (must be?) 
sparse.

CS 235: Introduction to Databases 18

Applications

Multiple keys, only one can be primary
• Only one primary index!

Non-key fields 
Clustering
• Store records of two different types on the 

same block



4

CS 235: Introduction to Databases 19

Buckets

Buckets of record pointers
Index points to buckets
Another level of indirection
Example
Is it worth it?
• Efficient joins.

CS 235: Introduction to Databases 20

B-trees

Balanced trees
Each node is at least half full.
Find any record with fixed number of I/O
• In most cases 1 or 2 

Many variants: B+ trees

CS 235: Introduction to Databases 21

B-tree Structure

Every node is stored in a block
Each node has space for 
• n values
• n+1 pointer
Three types of nodes: 
• Root
• Interior
• Leaf nodes

CS 235: Introduction to Databases 22

Leaf Nodes

All leaf nodes are chain-linked together
• One pointer per node.

Number of pairs of value and record 
pointer:
• Max: n
• Min: (n+1)/2

Example

CS 235: Introduction to Databases 23

Interior Node

Values and pointers to nodes of the next 
(lower) level:
• Max: n values, n+1 pointers
• Min: (n-1)/2 values, (n+1)/2 pointers

CS 235: Introduction to Databases 24

Root Node

Pointer(s) to next level
Min: 2
Max: n+1
Example
Extreme case:  the root is also a leaf



5

CS 235: Introduction to Databases 25

Lookup

Given a key x,
Start at the root node.
Follow the pointer before the smallest value 
that is strictly greater than x, or last pointer if 
there’s no such value.
Repeat until you reach a leaf node.
If x exists in the leaf node follow pointer to 
record, otherwise there’s no such record.  

CS 235: Introduction to Databases 26

Range Queries

SELECT beer 
FROM Sells
WHERE beer < ‘Corona’;

SELECT drinker
FROM Drinkers
WHERE drinker > ‘Amy’  
AND drinker < ‘Rick’;

CS 235: Introduction to Databases 27

Insertion

Possible cases:
1. No structural change
2. Leaf node overflow
3. Interior node overflow
4. Root overflow

A single insertion can trigger cases 2,3, 
and 4!

CS 235: Introduction to Databases 28

Deletion

Possible cases:
1. No structural changes

– But we may update a value in a higher level

2. Leaf node underflow
3. Interior node underflow
4. Root underflow
Often deletion reorganization is ignored.

CS 235: Introduction to Databases 29

Performance

Reorganization is rare
Lookup, insert, delete take k I/Os, where 
k is the depth of the tree.
k is at most 4
• For less than 4 billion records
The root is often kept in memory 
• And possibly (part) of second level
So, operations take 1-3 I/Os. 

CS 235: Introduction to Databases 30

Hashing

Main memory hashing
Secondary storage hashing
Static hashing
Extensible hashing
• Double the the number of buckets

Linear hashing
• Increase the number of buckets by 1


