CS 235:
Introduction to Databases

Svetlozar Nestorov

Outline

= Physical organization of data on disk
» Indexing (and SQL)
= Indexing sequential files

¢ Primary, secondary

e Clustering, non-clustering

* Dense, sparse.

Lecture Notes #22 o Multi-level
= Other indexing structures
e Linear, B-tree, hashing
Sectors and Blocks

Disk Surface

T

sectors

CS 235: Introduction to Databases

= Sector: smallest physical unit of data
transferred between disk and main
memory.

= Block: logical unit of data, consists of
several consecutive sectors.

= Databases deal with blocks.

CS 235: Introduction to Databases 4

Data Layout

= Each block contains:

¢ Block header (meta data)

¢ Records (corresponding to tuples)
= Each record contains:

¢ Record header

« Fields (attributes)

CS 235: Introduction to Databases

Indexing

= Get a particular record (or several records)
given a value for some field.
 Read all blocks with records.
» Use an index to locate block(s) with record(s).

CS 235: Introduction to Databases 6

Indexes in SQL

CREATE INDEX index_name
ON table(attrl, attr2,...);

CREATE INDEX bar_idx
ON Sells(bar);

= Indexes can be included in the table
declaration.

CS 235: Introduction to Databases

MySQL Indexes

CREATE TABLE Sells(
bar varchar(20),
beer varchar(20),
price real,
INDEX (bar),
INDEX beerlIdx (beer)
)i

DROP INDEX beerIdx ON Sells;
SHOW INDEX FROM Sells;

CS 235: Introduction to Databases 8

Using Indexes: Selection
SELECT beer FROM Sells WHERE bar = ‘Level’;
SELECT price FROM Sells WHERE beer = ‘Bud’;

SELECT price FROM Sells WHERE beer = ‘Bud’
AND bar = ‘Rainbo’;

SELECT MAX(price) FROM Sells WHERE bar <>
‘Cans’;

CS 235: Introduction to Databases

Using Indexes: Joins

SELECT beer
FROM Sells AS S, Frequents AS F
WHERE S.bar = F.bar AND drinker = 'Sally’;

SELECT beer

FROM Sells AS S, Frequents AS F
WHERE S.bar = F.bar AND price < 10;

CS 235: Introduction to Databases 10

Indexing Sequential Files

= Records stored in a sorted order
o often by primary key

= Primary index
¢ on a sorting field
o determines record location

CS 235: Introduction to Databases

Clustering

= Clustering index packs records with the
same values of indexed attributes in as
few blocks as possible
¢ Not necessarily sorted

CS 235: Introduction to Databases 12

Dense Indexes

= Record pointer for each key value

= Number of index entries = nhumber of
records
o Is it worth it?

= Example

= Block vs. Record pointers

CS 235: Introduction to Databases 13

Sparse Indexes

= Index only the first record in a block.
= Example.

= Always better than dense indexes?

» Records must be sorted.

CS 235: Introduction to Databases 14

Multiple Level Indexes

= What if indexes occupy many blocks?

= First-level index can be sparse or dense
= Higher level indexes must be sparse.

= Example.

CS 235: Introduction to Databases 15

Record Modifications

= Deletion
» Insertion
= Updates
= Reorganization policy
e immediate
 postpone (overflow blocks)
= Examples

CS 235: Introduction to Databases 16

Secondary Indexes

= Records not sorted (in order of indexing
field).
= First level index must be dense.

= Higher levels indexes can be (must be?)
sparse.

CS 235: Introduction to Databases 17

Applications

= Multiple keys, only one can be primary
¢ Only one primary index!

= Non-key fields

= Clustering

« Store records of two different types on the
same block

CS 235: Introduction to Databases 18

Buckets

= Buckets of record pointers
= Index points to buckets
= Another level of indirection
= Example
= Is it worth it?

o Efficient joins.

CS 235: Introduction to Databases

B-trees

» Balanced trees
= Each node is at least half full.

= Find any record with fixed number of I/O
e In most cases 1 or 2
= Many variants: B+ trees

CS 235: Introduction to Databases 20

B-tree Structure

= Every node is stored in a block
= Each node has space for

e n values

¢ n+1 pointer

Leaf Nodes

= All leaf nodes are chain-linked together
¢ One pointer per node.
= Number of pairs of value and record

= Three types of nodes: pointer:

¢ Root e Max: n

« Interior o Min: L(n+1)/2]

e Leaf nodes » Example

Interior Node Root Node

= Values and pointers to nodes of the next = Pointer(s) to next level

(lower) level: = Min: 2

e Max: n values, n+1 pointers » Max: n+1

« Min: [(n-1)/21 values, [(n+1)/21 pointers - Example

CS 235: Introduction to Databases

23

» Extreme case: the root is also a leaf

CS 235: Introduction to Databases 24

Lookup

= Given a key x,

= Start at the root node.

Follow the pointer before the smallest value
that is strictly greater than x, or last pointer if
there’s no such value.

Repeat until you reach a leaf node.

If x exists in the leaf node follow pointer to
record, otherwise there’s no such record.

CS 235: Introduction to Databases 25

Range Queries

SELECT beer
FROM Sells
WHERE beer < ‘Corona’;

SELECT drinker

FROM Drinkers

WHERE drinker > ‘Amy’
AND drinker < ‘Rick’;

CS 235: Introduction to Databases

Insertion

Possible cases:

1. No structural change
2. Leaf node overflow
3. Interior node overflow
4. Root overflow

A single insertion can trigger cases 2,3,
and 4!

CS 235: Introduction to Databases 27

Deletion

= Possible cases:

1. No structural changes
— But we may update a value in a higher level

2. Leaf node underflow
3. Interior node underflow

4. Root underflow
= Often deletion reorganization is ignored.

CS 235: Introduction to Databases

Performance

= Reorganization is rare

= Lookup, insert, delete take k I/Os, where
k is the depth of the tree.

= k is at most 4
« For less than 4 billion records
» The root is often kept in memory
¢ And possibly (part) of second level
= So, operations take 1-3 I/Os.

CS 235: Introduction to Databases 29

Hashing

= Main memory hashing
= Secondary storage hashing
= Static hashing
= Extensible hashing
¢ Double the the number of buckets
= Linear hashing
¢ Increase the number of buckets by 1

CS 235: Introduction to Databases

