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Outline

Physical organization of data on disk
Indexing (and SQL)
Indexing sequential files
• Primary, secondary
• Clustering, non-clustering
• Dense, sparse.
• Multi-level
Other indexing structures
• Linear, B-tree, hashing
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Disk Surface

gapstracks

sectors
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Sectors and Blocks

Sector: smallest physical unit of data 
transferred between disk and main 
memory.
Block: logical unit of data, consists of 
several consecutive sectors.
Databases deal with blocks.
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Data Layout

Each block contains:
• Block header (meta data)
• Records (corresponding to tuples)

Each record contains:
• Record header
• Fields (attributes) 
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Indexing

Get a particular record (or several records) 
given a value for some field.
• Read all blocks with records.
• Use an index to locate block(s) with record(s). 
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Indexes in SQL

CREATE INDEX index_name
ON table(attr1, attr2,…);

CREATE INDEX bar_idx
ON Sells(bar);

Indexes can be included in the table 
declaration.  
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MySQL Indexes

CREATE TABLE Sells(
bar varchar(20),
beer varchar(20),
price real,
INDEX (bar),
INDEX beerIdx (beer)

);

DROP INDEX beerIdx ON Sells;
SHOW INDEX FROM Sells;
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Using Indexes: Selection

SELECT beer FROM Sells WHERE bar = ‘Level’;

SELECT price FROM Sells WHERE beer = ‘Bud’;

SELECT price FROM Sells WHERE beer = ‘Bud’ 
AND bar = ‘Rainbo’;

SELECT MAX(price) FROM Sells WHERE bar <> 
‘Cans’;
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Using Indexes: Joins

SELECT beer 
FROM Sells AS S,  Frequents AS F
WHERE S.bar = F.bar AND drinker = ‘Sally’;

SELECT beer 
FROM Sells AS S,  Frequents AS F
WHERE S.bar = F.bar AND price < 10;
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Indexing Sequential Files

Records stored in a sorted order
• often by primary key

Primary index 
• on a sorting field
• determines record location 
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Clustering

Clustering index packs records with the 
same values of indexed attributes in as 
few blocks as possible
• Not necessarily sorted
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Dense Indexes

Record pointer for each key value
Number of index entries = number of 
records
• Is it worth it?

Example
Block vs. Record pointers
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Sparse Indexes

Index only the first record in a block.
Example.
Always better than dense indexes?
Records must be sorted.
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Multiple Level Indexes

What if indexes occupy many blocks?
First-level index can be sparse or dense
Higher level indexes must be sparse.
Example.
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Record Modifications

Deletion 
Insertion
Updates
Reorganization policy
• immediate
• postpone (overflow blocks)

Examples
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Secondary Indexes

Records not sorted (in order of indexing 
field).
First level index must be dense.
Higher levels indexes can be (must be?) 
sparse.
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Applications

Multiple keys, only one can be primary
• Only one primary index!

Non-key fields 
Clustering
• Store records of two different types on the 

same block
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Buckets

Buckets of record pointers
Index points to buckets
Another level of indirection
Example
Is it worth it?
• Efficient joins.
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B-trees

Balanced trees
Each node is at least half full.
Find any record with fixed number of I/O
• In most cases 1 or 2 

Many variants: B+ trees
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B-tree Structure

Every node is stored in a block
Each node has space for 
• n values
• n+1 pointer
Three types of nodes: 
• Root
• Interior
• Leaf nodes
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Leaf Nodes

All leaf nodes are chain-linked together
• One pointer per node.

Number of pairs of value and record 
pointer:
• Max: n
• Min: (n+1)/2

Example
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Interior Node

Values and pointers to nodes of the next 
(lower) level:
• Max: n values, n+1 pointers
• Min: (n-1)/2 values, (n+1)/2 pointers
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Root Node

Pointer(s) to next level
Min: 2
Max: n+1
Example
Extreme case:  the root is also a leaf
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Lookup

Given a key x,
Start at the root node.
Follow the pointer before the smallest value 
that is strictly greater than x, or last pointer if 
there’s no such value.
Repeat until you reach a leaf node.
If x exists in the leaf node follow pointer to 
record, otherwise there’s no such record.  
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Range Queries

SELECT beer 
FROM Sells
WHERE beer < ‘Corona’;

SELECT drinker
FROM Drinkers
WHERE drinker > ‘Amy’  
AND drinker < ‘Rick’;
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Insertion

Possible cases:
1. No structural change
2. Leaf node overflow
3. Interior node overflow
4. Root overflow

A single insertion can trigger cases 2,3, 
and 4!
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Deletion

Possible cases:
1. No structural changes

– But we may update a value in a higher level

2. Leaf node underflow
3. Interior node underflow
4. Root underflow
Often deletion reorganization is ignored.
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Performance

Reorganization is rare
Lookup, insert, delete take k I/Os, where 
k is the depth of the tree.
k is at most 4
• For less than 4 billion records
The root is often kept in memory 
• And possibly (part) of second level
So, operations take 1-3 I/Os. 
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Hashing

Main memory hashing
Secondary storage hashing
Static hashing
Extensible hashing
• Double the the number of buckets

Linear hashing
• Increase the number of buckets by 1


