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Introduction to Databases

Svetlozar Nestorov
Lecture Notes #20
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Outline

Datalog: logical query language
Datalog safety rule
Expressive power of datalog
Recursion in datalog
Recursion and negation
Stratified negation
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Logical  Query  Languages

Motivation:
1. Logical  rules  extend  more  naturally  to 

recursive  queries  than  does  relational  
algebra.
• Used  in  SQL3  recursion.

2.  Logical  rules  form  the  basis  for  many 
information-integration  systems  and 
applications.
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Datalog Example

Likes(drinker, beer)
Sells(bar, beer, price)
Frequents(drinker, bar)

Happy(d) ← Frequents(d,bar)  AND
Likes(d,beer)  AND
Sells(bar,beer,p)
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Notation

The expression is a rule
Left side = head.
Right side = body = AND of subgoals.
Head and subgoals are atoms.
Atom = predicate  and  arguments.
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More Notation

Predicate = relation name or arithmetic 
predicate, e.g. <.
Arguments are variables or constants.
Subgoals (not head) may optionally be 
negated by NOT.
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Meaning  of  Rules

Head is true of its arguments if there exist 
values for local variables (those in body) 
that make all of the subgoals true.
If no negation or arithmetic comparisons, 
just natural join the subgoals and project  
onto the head variables.
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Example

Previous rule is equivalent to:
Happy(d)  =  

πdrinker(Frequents Likes    Sells)
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Evaluation of Rules

Two, dual, approaches:
1. Variable-based: Consider all possible 

assignments of values to variables. If all 
subgoals are true, add the head to the  
result relation.

2. Tuple-based: Consider all assignments of 
tuples to subgoals that make each subgoal
true. If the variables are assigned 
consistent values, add the head to the  
result.
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Example:Variable-Based 
Assignment

S(x,y) ← R(x,z) AND R(z,y) AND NOT R(x,y)

R has two tuples: (1,2) and (2,3)
Only two assignments make the first 
subgoal true: 

1. x = 1, z = 2 
2. x = 2, z = 3
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Example (continued)

In case (1), y = 3 makes second subgoal
true.
Since (1,3) is not in R, the third subgoal is 
also true.
So, add (x,y) = (1,3) to relation S.
In case (2), no value of y makes the  
second subgoal true.   
Thus,  S = {(1,3)}
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Example: Tuple-Based  
Assignment

Trick: start with the positive (not 
negated), relational (not arithmetic)  
subgoals only.

S(x,y) ← R(x,z) AND R(z,y) AND NOT R(x,y)

R has two tuples: (1,2) and (2,3)
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Example (continued)

Four assignments of tuples to subgoals
R(x,z)            R(z,y)
(1,2)              (1,2)
(1,2)              (2,3)
(2,3)              (1,2)
(2,3)              (2,3)

Only the second gives a consistent value to z.
That assignment also makes NOT R(x,y) true.
Thus, (1,3) is the only tuple for the head.
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Safety

A rule can make no sense if variables 
appear in weird ways.
Examples:
S(x) ← R(y)
S(x) ← NOT R(x)
S(x) ← R(y) AND x < y
In each of these cases, the result is 
infinite, even if the relation R is finite.
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Safety Definition

To make sense as a database operation, we
need to require three things of a variable x  (=
definition of safety).  If x appears in either

1. The head,
2. A negated subgoal,  or
3. An arithmetic comparison,

then x must also appear in a nonnegated, ordinary 
(relational) subgoal of the body.
We insist that rules be safe, henceforth.
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Datalog Programs

A collection of rules is a Datalog program.
Predicates/relations divide into two classes:
• EDB = extensional database = relation stored in DB.
• IDB = intensional database = relation defined by one  

or more rules.

A predicate must be IDB or EDB, not both.
Thus, an IDB predicate can appear in the body  
or head of a rule; EDB only in the body.
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Example

Convert the following SQL statement (Find the 
manufacturers of the beers that Spoon sells):

Beers(name, manf)   Sells(bar, beer, price)
SELECT  manf
FROM  Beers
WHERE  name  IN (

SELECT  beer
FROM  Sells
WHERE  bar  =  ‘Spoon’);

to a Datalog program.
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Example (continued)

SpoonMenu(b) ← Sells(‘Spoon’, b, p)
Answer(m) ← SpoonMenu(b) AND  

Beers(b,m)

Note: Beers, Sells = EDB; SpoonMenu, 
Answer = IDB.
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Expressive Power of Datalog

Nonrecursive Datalog = relational  
algebra.
Datalog simulates SQL select-from-where 
without aggregation and grouping.
Recursive Datalog expresses queries that 
cannot be expressed in SQL.
But none of these languages have full

expressive power (Turing completeness).
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Relational Algebra to Datalog

Text has constructions for each of the 
operators of relational algebra.
Only hard part: selections with OR's and 
NOT's.
Simulate a relational algebra expression  
in Datalog by creating an IDB predicate  
for each interior node and using the  
construction for the operator at that node.
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Example

Find the bar that sells two beers at the 
same price:
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Example (continued)

R1(bar,beer1,beer,price) ←
Sells(bar,beer1,price)  AND
Sells(bar,beer,price);

R2(bar,beer1,beer,price) ←
R1(bar,beer1,beer,price)  AND
beer1  ><  beer;

Answer(bar) ← R2(bar,beer1,beer,price);
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Datalog to Relational  Algebra

General rule is complex; the following often 
works for single rules:

1. Use ρ to create for each relational subgoal a  
relation whose schema is the variables of that  
subgoal.

2. Handle negated subgoals by finding an 
expression for the finite set of all possible 
values for each of its variables (π a suitable  
column) and take their product. Then subtract.
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More Datalog to Relational Algebra

3. Natural join the relations from (1), (2).
4. Get the effect of arithmetic comparisons 

with σ.
5. Project onto head with π.

Several rules for same predicate: use  ∪.
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More Datalog to Relational Algebra

Problems not handled: constant 
arguments and  variables appearing 
twice in the same atom.
Can you provide the necessary fixes?
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Example

S(x,y) ← R(x,z) AND R(z,y) AND NOT R(x,y)

S1(x,y,z)  := 
S2(x,y)  :=  
S3(x,y)  := 
S(x,y)  :=  
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Quote From the Blogs

Recursion gives me migraines whereas 
SQL only gives me headache!
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Recursion

IDB predicate P depends on predicate Q if 
there is a rule with P in the head and Q in 
a subgoal.
Draw a graph: nodes = IDB predicates, 
arc from P to Q means P depends on Q.
If there is a cycle then the program is 
recursive.
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Recursive Example

Sib(x,y) ← Par(x,p) AND Par(y,p) 
AND x >< y

Cousin(x,y) ← Sib(x,y)

Cousin(x,y) ← Par(x,xp) AND Par(y,yp)
AND Cousin(xp,yp)
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Evaluating Recursive Rules

Iterative fixed-point evaluation:
Start 
IDB = ∅

Apply rules 
to IDB, EDB

Changes
to IDB?Yes

No
Done
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Example

EDB Par = 

c e

a d

g hf

j k i

b
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Iterations

Sib Cousin
Initial ∅ ∅
Round 1 add: (b,c), (c,e)

(g,h), (j,k)
Round 2 add: (b,c), (c,e)

(g,h), (j,k)
Round 3 add: (f,g), (f,h), (g,i)

(h,i), (i,k)
Round 4 add: (k,k), (i,j)
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Negation and Recursion

Negation wrapped inside a recursion 
makes no sense.
Even when negation and recursion are 
separated, there can be ambiguity about 
what the rules mean, and one meaning 
must be selected.
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Stratified Negation

Stratified negation is an additional 
restraint on recursive rules (like safety) 
that solves both problems:
1.It rules out negation wrapped in recursion.
2.When negation is separate from recursion, it 

yields the intuitively correct meaning of rules 
(the stratified model).
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Problem with Recursive 
Negation

Consider:
P(x) ← Q(x) AND NOT P(x)
Q = EDB = {1,2}.
Compute IDB P iteratively?
• Initially, P = ∅
• Round 1: P = {1,2}
• Round 2: P = ∅, etc., etc.
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Strata

Intuitively: stratum of an IDB predicate 
maximum number of negations you can pass 
through on the way to an EDB predicate.
Must not be infinity in stratified rules.
Define stratum graph:
• Nodes = IDB predicates.
• Arc P → Q if Q appears in the body of a rule with 

head P .

Label that arc - if Q is in a negated subgoal.
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Example

P(x) ← Q(x) AND NOT P(x)
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Another Example

Given Source(node), Target(node), 
Arc(node1, node2).
Which target nodes cannot be reached 
from any source node?
Reach(x) ← Source(x)
Reach(x) ← Reach(y) AND Arc(y,x)
NoReach(x) ← Target(x) AND 

NOT Reach(x)
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Computing Strata

Stratum of an IDB predicate A = 
maximum number of negative arcs on any 
path from A in the stratum graph.
Examples:
• For first example, stratum of P is ∞.
• For second example, stratum of Reach is 0; 

stratum of NoReach is 1.
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Stratified Negation

A Datalog program with recursion and 
negation is stratified if every IDB predicate 
has a finite stratum.
If a Datalog program is stratified, we can 
compute the relations for the IDB 
predicates lowest-stratum-first.
• This is the stratified model.
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Example

Reach(x) ← Source(x)
Reach(x) ← Reach(y) AND Arc(y,x)
NoReach(x) ← Target(x) AND 

NOT Reach(x)
EDB:
• Source = {1}.
• Arc = {(1,2), (3,4), (4,3)}.
• Target ={2,3}.
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Example (continued)

First compute Reach = {1,2} (stratum 0).
Next compute NoReach = {3}.
Is the stratified solution obvious? 
There is another model that makes the 
rules true no matter what values we 
substitute for the variables.
• Reach = {1,2,3,4}.
• NoReach = ∅.
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Example (continued)

Remember: the only way to make a 
Datalog rule false is to find values for the 
variables that make the body true and the 
head false.
For this model, the heads of the rules for 
Reach are true for all values, and in the 
rule for NoReach the subgoal NOT 
Reach(x) assures that the body cannot be 
true.


