
1

CS 235:
Introduction to Databases

Svetlozar Nestorov
Lecture Notes #20

CS 235: Introduction to Databases 2

Outline

Datalog: logical query language
Datalog safety rule
Expressive power of datalog
Recursion in datalog
Recursion and negation
Stratified negation

CS 235: Introduction to Databases 3

Logical Query Languages

Motivation:
1. Logical rules extend more naturally to

recursive queries than does relational
algebra.
• Used in SQL3 recursion.

2. Logical rules form the basis for many
information-integration systems and
applications.

CS 235: Introduction to Databases 4

Datalog Example

Likes(drinker, beer)
Sells(bar, beer, price)
Frequents(drinker, bar)

Happy(d) ← Frequents(d,bar) AND
Likes(d,beer) AND
Sells(bar,beer,p)

CS 235: Introduction to Databases 5

Notation

The expression is a rule
Left side = head.
Right side = body = AND of subgoals.
Head and subgoals are atoms.
Atom = predicate and arguments.

CS 235: Introduction to Databases 6

More Notation

Predicate = relation name or arithmetic
predicate, e.g. <.
Arguments are variables or constants.
Subgoals (not head) may optionally be
negated by NOT.

2

CS 235: Introduction to Databases 7

Meaning of Rules

Head is true of its arguments if there exist
values for local variables (those in body)
that make all of the subgoals true.
If no negation or arithmetic comparisons,
just natural join the subgoals and project
onto the head variables.

CS 235: Introduction to Databases 8

Example

Previous rule is equivalent to:
Happy(d) =

πdrinker(Frequents Likes Sells)

CS 235: Introduction to Databases 9

Evaluation of Rules

Two, dual, approaches:
1. Variable-based: Consider all possible

assignments of values to variables. If all
subgoals are true, add the head to the
result relation.

2. Tuple-based: Consider all assignments of
tuples to subgoals that make each subgoal
true. If the variables are assigned
consistent values, add the head to the
result.

CS 235: Introduction to Databases 10

Example:Variable-Based
Assignment

S(x,y) ← R(x,z) AND R(z,y) AND NOT R(x,y)

R has two tuples: (1,2) and (2,3)
Only two assignments make the first
subgoal true:

1. x = 1, z = 2
2. x = 2, z = 3

CS 235: Introduction to Databases 11

Example (continued)

In case (1), y = 3 makes second subgoal
true.
Since (1,3) is not in R, the third subgoal is
also true.
So, add (x,y) = (1,3) to relation S.
In case (2), no value of y makes the
second subgoal true.
Thus, S = {(1,3)}

CS 235: Introduction to Databases 12

Example: Tuple-Based
Assignment

Trick: start with the positive (not
negated), relational (not arithmetic)
subgoals only.

S(x,y) ← R(x,z) AND R(z,y) AND NOT R(x,y)

R has two tuples: (1,2) and (2,3)

3

CS 235: Introduction to Databases 13

Example (continued)

Four assignments of tuples to subgoals
R(x,z) R(z,y)
(1,2) (1,2)
(1,2) (2,3)
(2,3) (1,2)
(2,3) (2,3)

Only the second gives a consistent value to z.
That assignment also makes NOT R(x,y) true.
Thus, (1,3) is the only tuple for the head.

CS 235: Introduction to Databases 14

Safety

A rule can make no sense if variables
appear in weird ways.
Examples:
S(x) ← R(y)
S(x) ← NOT R(x)
S(x) ← R(y) AND x < y
In each of these cases, the result is
infinite, even if the relation R is finite.

CS 235: Introduction to Databases 15

Safety Definition

To make sense as a database operation, we
need to require three things of a variable x (=
definition of safety). If x appears in either

1. The head,
2. A negated subgoal, or
3. An arithmetic comparison,

then x must also appear in a nonnegated, ordinary
(relational) subgoal of the body.
We insist that rules be safe, henceforth.

CS 235: Introduction to Databases 16

Datalog Programs

A collection of rules is a Datalog program.
Predicates/relations divide into two classes:
• EDB = extensional database = relation stored in DB.
• IDB = intensional database = relation defined by one

or more rules.

A predicate must be IDB or EDB, not both.
Thus, an IDB predicate can appear in the body
or head of a rule; EDB only in the body.

CS 235: Introduction to Databases 17

Example

Convert the following SQL statement (Find the
manufacturers of the beers that Spoon sells):

Beers(name, manf) Sells(bar, beer, price)
SELECT manf
FROM Beers
WHERE name IN (

SELECT beer
FROM Sells
WHERE bar = ‘Spoon’);

to a Datalog program.

CS 235: Introduction to Databases 18

Example (continued)

SpoonMenu(b) ← Sells(‘Spoon’, b, p)
Answer(m) ← SpoonMenu(b) AND

Beers(b,m)

Note: Beers, Sells = EDB; SpoonMenu,
Answer = IDB.

4

CS 235: Introduction to Databases 19

Expressive Power of Datalog

Nonrecursive Datalog = relational
algebra.
Datalog simulates SQL select-from-where
without aggregation and grouping.
Recursive Datalog expresses queries that
cannot be expressed in SQL.
But none of these languages have full

expressive power (Turing completeness).
CS 235: Introduction to Databases 20

Relational Algebra to Datalog

Text has constructions for each of the
operators of relational algebra.
Only hard part: selections with OR's and
NOT's.
Simulate a relational algebra expression
in Datalog by creating an IDB predicate
for each interior node and using the
construction for the operator at that node.

CS 235: Introduction to Databases 21

Example

Find the bar that sells two beers at the
same price:

CS 235: Introduction to Databases 22

Example (continued)

R1(bar,beer1,beer,price) ←
Sells(bar,beer1,price) AND
Sells(bar,beer,price);

R2(bar,beer1,beer,price) ←
R1(bar,beer1,beer,price) AND
beer1 >< beer;

Answer(bar) ← R2(bar,beer1,beer,price);

CS 235: Introduction to Databases 23

Datalog to Relational Algebra

General rule is complex; the following often
works for single rules:

1. Use ρ to create for each relational subgoal a
relation whose schema is the variables of that
subgoal.

2. Handle negated subgoals by finding an
expression for the finite set of all possible
values for each of its variables (π a suitable
column) and take their product. Then subtract.

CS 235: Introduction to Databases 24

More Datalog to Relational Algebra

3. Natural join the relations from (1), (2).
4. Get the effect of arithmetic comparisons

with σ.
5. Project onto head with π.

Several rules for same predicate: use ∪.

5

CS 235: Introduction to Databases 25

More Datalog to Relational Algebra

Problems not handled: constant
arguments and variables appearing
twice in the same atom.
Can you provide the necessary fixes?

CS 235: Introduction to Databases 26

Example

S(x,y) ← R(x,z) AND R(z,y) AND NOT R(x,y)

S1(x,y,z) :=
S2(x,y) :=
S3(x,y) :=
S(x,y) :=

CS 235: Introduction to Databases 27

Quote From the Blogs

Recursion gives me migraines whereas
SQL only gives me headache!

CS 235: Introduction to Databases 28

Recursion

IDB predicate P depends on predicate Q if
there is a rule with P in the head and Q in
a subgoal.
Draw a graph: nodes = IDB predicates,
arc from P to Q means P depends on Q.
If there is a cycle then the program is
recursive.

CS 235: Introduction to Databases 29

Recursive Example

Sib(x,y) ← Par(x,p) AND Par(y,p)
AND x >< y

Cousin(x,y) ← Sib(x,y)

Cousin(x,y) ← Par(x,xp) AND Par(y,yp)
AND Cousin(xp,yp)

CS 235: Introduction to Databases 30

Evaluating Recursive Rules

Iterative fixed-point evaluation:
Start
IDB = ∅

Apply rules
to IDB, EDB

Changes
to IDB?Yes

No
Done

6

CS 235: Introduction to Databases 31

Example

EDB Par =

c e

a d

g hf

j k i

b

CS 235: Introduction to Databases 32

Iterations

Sib Cousin
Initial ∅ ∅
Round 1 add: (b,c), (c,e)

(g,h), (j,k)
Round 2 add: (b,c), (c,e)

(g,h), (j,k)
Round 3 add: (f,g), (f,h), (g,i)

(h,i), (i,k)
Round 4 add: (k,k), (i,j)

CS 235: Introduction to Databases 33

Negation and Recursion

Negation wrapped inside a recursion
makes no sense.
Even when negation and recursion are
separated, there can be ambiguity about
what the rules mean, and one meaning
must be selected.

CS 235: Introduction to Databases 34

Stratified Negation

Stratified negation is an additional
restraint on recursive rules (like safety)
that solves both problems:
1.It rules out negation wrapped in recursion.
2.When negation is separate from recursion, it

yields the intuitively correct meaning of rules
(the stratified model).

CS 235: Introduction to Databases 35

Problem with Recursive
Negation

Consider:
P(x) ← Q(x) AND NOT P(x)
Q = EDB = {1,2}.
Compute IDB P iteratively?
• Initially, P = ∅
• Round 1: P = {1,2}
• Round 2: P = ∅, etc., etc.

CS 235: Introduction to Databases 36

Strata

Intuitively: stratum of an IDB predicate
maximum number of negations you can pass
through on the way to an EDB predicate.
Must not be infinity in stratified rules.
Define stratum graph:
• Nodes = IDB predicates.
• Arc P → Q if Q appears in the body of a rule with

head P .

Label that arc - if Q is in a negated subgoal.

7

CS 235: Introduction to Databases 37

Example

P(x) ← Q(x) AND NOT P(x)

CS 235: Introduction to Databases 38

Another Example

Given Source(node), Target(node),
Arc(node1, node2).
Which target nodes cannot be reached
from any source node?
Reach(x) ← Source(x)
Reach(x) ← Reach(y) AND Arc(y,x)
NoReach(x) ← Target(x) AND

NOT Reach(x)

CS 235: Introduction to Databases 39

Computing Strata

Stratum of an IDB predicate A =
maximum number of negative arcs on any
path from A in the stratum graph.
Examples:
• For first example, stratum of P is ∞.
• For second example, stratum of Reach is 0;

stratum of NoReach is 1.

CS 235: Introduction to Databases 40

Stratified Negation

A Datalog program with recursion and
negation is stratified if every IDB predicate
has a finite stratum.
If a Datalog program is stratified, we can
compute the relations for the IDB
predicates lowest-stratum-first.
• This is the stratified model.

CS 235: Introduction to Databases 41

Example

Reach(x) ← Source(x)
Reach(x) ← Reach(y) AND Arc(y,x)
NoReach(x) ← Target(x) AND

NOT Reach(x)
EDB:
• Source = {1}.
• Arc = {(1,2), (3,4), (4,3)}.
• Target ={2,3}.

CS 235: Introduction to Databases 42

Example (continued)

First compute Reach = {1,2} (stratum 0).
Next compute NoReach = {3}.
Is the stratified solution obvious?
There is another model that makes the
rules true no matter what values we
substitute for the variables.
• Reach = {1,2,3,4}.
• NoReach = ∅.

8

CS 235: Introduction to Databases 43

Example (continued)

Remember: the only way to make a
Datalog rule false is to find values for the
variables that make the body true and the
head false.
For this model, the heads of the rules for
Reach are true for all values, and in the
rule for NoReach the subgoal NOT
Reach(x) assures that the body cannot be
true.

