
1

CS 235:
Introduction to Databases

Svetlozar Nestorov

Lecture Notes #19

Transaction Management

• Manage many queries/updates running
simultaneously.
– Airline reservations, auctions, ATMs.

• Atomicity – all or nothing principle.
• Serializability – the effect of transactions

as if they occurred one at a time.

Transaction Control

• Items – units of data to be controlled:
– fine-grained – small items, e.g. tuples.
– coarse-grained – large items, e.g. relations.

• Controlling access by locks.
– Read – sharable with other readers.
– Write – not sharable with anyone else.

• Model – (item, locktype, transactionID).

Transactions
• A transaction is a unit of work that must be:
1.Atomic = either all work is done, or none of it.
2.Consistent = relationships among values

maintained.
3. Isolated = appear to have been executed when

no other DB operations were being performed.
– Often called serializable behavior.

4.Durable = effects are permanent even if system
crashes.

Commit or Abort
• Each transaction ends with either:
1. Commit = the work of the transaction is installed

in the database; previously its changes may be
invisible to other transactions.

2. Abort = no changes by the transaction appear in
the database; it is as if the transaction never
occurred.
– ROLLBACK is the term used in SQL and MySQL.

Transaction Boundaries
• In the ad-hoc query interface (e.g., mysql client), every

query or modification statement is a transaction.
• You can disable this mode by:

SET AUTOCOMMIT = 0;
– A COMMIT or ROLLBACK ends the previous transaction and

starts a new one. Exiting mysql forces implicit COMMIT.
• You can also start transaction explicitly:

START TRANSACTION;
• Transactions work with InnoDB tables but not with

MyISAM tables.

2

Example
• Spoon sells Bud for $2.50 and Miller for $3.00.
• Sally is querying the database for the highest

and lowest price Spoon charges:
• At the same time, Spoon has decided to replace

Miller and Bud by Heineken at $3.50:
• Can Sally find that the cheapest beer sold at

Spoon is more expensive than the most
expensive one?!

• Fix the problem by grouping Sally's two
statements into one transaction, e.g., with one
SQL statement.

Problem With Rollback
• Suppose Spoon inserts Heineken, but then,

during the transaction thinks better of it and
issues a ROLLBACK statement.

• If Sally is allowed to execute finding the max
price just before the rollback, she gets the
answer $3.50, even though Spoon doesn't sell
any beer for $3.50.

• Fix by making the insert a transaction, or part of
a transaction, so its effects cannot be seen by
Sally unless there is a COMMIT action.

SQL Isolation Levels
• Isolation levels determine what a transaction is

allowed to see. The declaration, valid for one
transaction, is:
SET TRANSACTION ISOLATION LEVEL X;

• X can be:
– SERIALIZABLE
– READ COMMITTED
– REPEATABLE READ
– READ UNCOMMITTED

• In MySQL (with InnoDB) REPEATABLE READ
is the default.

Serializable Example
• The transaction must execute as if at a point in

time, where all other transactions occurred
either completely before or completely after.

• Sally's queries are one transaction and Spoon
updates are another transaction. If Sally's
transaction runs at isolation level
SERIALIZABLE, she would see the Sells relation
either before or after the updates ran, but not in
the middle.

Read-Committed Example

• The transaction can read only committed
data.

• If transactions are as before, Sally could
see the original Sells for statement 1 and
the completely changed Sells for
statement 2.

Repeatable-Read Example
• If a transaction reads data twice, then what it

saw the first time, it will see the second time (it
may see more the second time).

• If find max is executed before, then it must see
the Bud and Miller tuples when it computes the
min, even if it executes after their deletion. But if
find max executes between the deletion and
insertion, then find min may see the Heineken
tuple.

3

Read-Uncommitted Example

• No constraint, even on reading data
written and then removed by a rollback.

• Sally’s two queries could see Heineken,
even if Spoon rolled back the transaction.

Another Example
T1 T2 start with A = 5
Read A A on disk A in T1 A in T2

Read A 5 5 5
A:= A + 1

A:= 2* A
Write A

Write A

Locks
T1

RLOCK A NO R W
WLOCK A NO OK OK OK
UNLOCK A T2 R OK OK bad

W OK bad bad

RLOCK –> UNLOCK can enclose a read
WLOCK –> UNLOCK can enclose a write or read

Example with Locks
T1 T2
WLOCK A
Read A

WLOCK A
A:= A+1
Write A waits
UNLOCK A

granted
Read A
A:=2*A
Write A
UNLOCK A

Deadlock!
T1 T2
RLOCK A
Read A

RLOCK A
Read A

A:= A+1
A:= 2*A
WLOCK A upgrade lock request

WLOCK A upgrade lock request
wait wait

Deadlock!

Another Deadlock
T1 T2
WLOCK A

WLOCK B
WLOCK B

wait WLOCK A
UNLOCK A wait deadlock!

UNLOCK B
UNLOCK B

UNLOCK A

4

Deadlock Conditions
1. Hold some locks while you wait for others.
2. Circular chain of waiters wait-for graph.
3. No pre-emption.
• We can avoid deadlock by doing at least

ONE of:
1. Get all your locks at once
2. Apply an ordering to acquiring locks
3. Allow preemption (for example, use timeout

on waits)

Authorization in SQL

• File systems identify certain access
privileges on files, e.g., read, write,
execute.

• In partial analogy, SQL identifies six
access privileges on relations, of which the
most important are:

1. SELECT = the right to query the relation.

More Privileges
2. INSERT: the right to insert tuples into the

relation – may refer to one attribute, in which
case the privilege is to specify only one column
of the inserted tuple.

MySQL does not support attribute-level privileges.
3. DELETE: the right to delete tuples from the

relation.
4. UPDATE: the right to update tuples of the

relation – may refer to one attribute.

Granting Privileges

• You have all possible privileges to the
relations you create.

• You may grant privileges to any user if you
have those privileges “with grant option.”
– You have this option to your own

relations.

Example
1. Here, Sally can query and update Sells, but

cannot pass on this power:
GRANT SELECT ON Sells,
UPDATE ON Sells
TO sally;

2. Here, Sally can also pass these privileges to
whom she chooses:

GRANT SELECT ON Sells,
UPDATE ON Sells
TO sally
WITH GRANT OPTION;

Revoking Privileges
• Your privileges can be revoked.
• Syntax is like granting, but REVOKE ... FROM

instead of GRANT ... TO.
• Determining whether or not you have a privilege

is tricky, involving “grant diagrams” as in text.
However, the basic principles are:
– If you have been given a privilege by several different

people, then all of them have to revoke in order for
you to lose the privilege.

– Revocation is transitive. if A granted P to B, who then
granted P to C, and then A revokes P from B, it is as if
B also revoked P from C.

