
1

CS 235:
Introduction to Databases

Svetlozar Nestorov

Lecture Notes #18

Outline

• Embedded SQL.
• Call-Level Interface (CLI).
• Java Database Connectivity (JDBC).

Embedded SQL

• Standard for combining SQL with a host
language.

• SQL statements are converted to
procedure calls in the host language by a
preprocessor.

• Begin SQL statements with EXEC SQL.

Shared Variables

• The interface between SQL and the host
language is through shared variables.
EXEC SQL BEGIN DECLARE SECTION;

declarations of shared variables in host
language syntax

EXEC SQL END DECLARE SECTION;

Use of Shared Variables

• In SQL, shared variables are preceded by
a colon.
– Can be used as constants in SQL statements.
– Can get values from SQL statements and

pass values to host language.
• In the host language, shared variables are

used as any other variables.

Example
• Look up the price that a given bar charges

for a given beer.
EXEC SQL BEGIN DECLARE SECTION;

char aBeer[21], aBar[21];
float aPrice;

EXEC SQL END DECLARE SECTION;
/* read in the beer and the bar */
EXEC SQL SELECT price

INTO :aPrice
FROM Sells
WHERE beer = :aBeer AND bar = :aBar;

/* print the price */

2

Embedded Queries

• Modification queries.
– Return no results; can be used anywhere.

• Single-row select queries.
– Return a single tuple; can be read into shared

variables.
• Multiple-row select queries.

– Return many tuples; can be used with
cursors.

Cursors

• Declare a cursor.
EXEC SQL DECLARE c CURSOR FOR
<query>;

• Open a cursor.
EXEC SQL OPEN c;

• Fetch a tuple.
EXEC SQL FETCH c INTO <vars>;

Example (1/2)

• Find the prices of all beers sold in Spoon.
EXEC SQL BEGIN DECLARE SECTION;

char aBeer[21];
float aPrice;

EXEC SQL END DECLARE SECTION;
EXEC SQL DECLARE spoonBeers CURSOR FOR

SELECT beer, price
FROM Sells
WHERE bar = ‘Spoon’;

Example (2/2)
EXEC SQL OPEN CURSOR spoonBeers;
while(1) {

EXEC SQL FETCH spoonBeers
INTO :aBeer, :aPrice;

if (NO_MORE_TUPLES) break;
/* print out the beer and the price */

}
EXEC SQL CLOSE CURSOR spoonBeers;

Modifying Base Relations

• A cursor can range over a base relation.
EXEC SQL DECLARE c CURSOR FOR Sells;

• Modifications can be made only to the
current tuple.
EXEC SQL DELETE FROM Sells

WHERE CURRENT OF c;
• Any condition can be applied in the host

language.

Dynamic SQL

• So far, fixed queries with possibly some
parameters.

• What if we want run ad-hoc queries?
• Dynamic SQL

– Prepare statement (not known at compile
time.)

– Execute statement.

3

Dynamic SQL Syntax

• Prepare a query.
EXEC SQL PREPARE <query-name>

FROM <query>;
• Execute a query.

EXEC SQL EXECUTE <query-name>;

Example
• Read a query and run it.
EXEC SQL BEGIN DECLARE SECTION;

char query[255];
EXEC SQL END DECLARE SECTION;
while (1)

/* read query */
EXEC SQL PREPARE q FROM :query;
EXEC SQL EXECUTE q;

Execute-Immediate

• If the query is to be executed only once
the prepare and execute statements can
be combined.
EXEC SQL EXECUTE IMMEDIATE <query>;

SQL/CLI

• Call-Level Interface: call library functions
and procedures within a host language.

• Data types:
– Environments: DBMS installation.
– Connections: logins to DBMS.
– Statements: SQL statements.
– Descriptions: query results or parameters.

Data Type Instances

• Create environment, connection, and
statement handles with
SQLAllocHandle(T,I,O)
– T is the type, e.g.SQL_HANDLE_ENV.
– I is the input handle (higher-level handle):

• statement < connection < environment
– O is the output handle.

Example

SQLHENV myEnv;
SQLHDBC myCon;
SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HANDLE, &myEnv);
SQLAllocHandle(SQL_HANDLE_DBC,

myEnv, &myCon);

4

Processing Statements

• Prepare and execute.
SQLPrepare(<statement-handle>,

<statement>,
<length of statement>)

SQLExecute(<statement-handle>)

Example
SQLPrepare(myStmt, “SELECT bar, beer

FROM Sells WHERE price < 3.00”,
SQL_NTS)

SQLExecute(myStmt)
or

SQLExecDirect(myStmt, “SELECT bar, beer
FROM Sells WHERE price < 3.00”,
SQL_NTS)

Fetching Tuples

• Every statement has an implied cursor
associated with it.

• SQLFetch(<stmt-handle>) returns the next
tuple from the result of the executed
statement.

Binding Variables
• Before fetching we need to indicate where

the tuple attributes should be stored.
SQLBindCol(<stmt-handle>,

<attribute-pos>,
<attribute-type>,
<var-ptr>,
<var-size>,
<var-info-ptr>);

Example
SQLExecDirect(myStmt, “SELECT bar, beer

FROM Sells WHERE price < 3.00”, SQL_NTS);
SQLBindCol(myStmt, 1, SQL_CHAR, &aBar,

size(aBar), &aBarInfo);
SQLBindCol(myStmt, 2, SQL_CHAR, &aBeer,

size(aBeer), &aBeerInfo);
while (SQLFetch(myStmt) != SQL_NO_DATA)
{

/* Cheers! */
}

Parameterized Queries

• Bind variables to query parameters, so
you can execute the same statement
several times with different parameters.

SQLPrepare(myStmt, “INSERT(bar, beer)
VALUES(?,?)”, SQL_NTS);

SQLBindParameter(myStmt, 1,…,aBar,…);
SQLBindParameter(myStmt, 2,…,aBeer,…);
SQLExecute(myStmt);

5

JDBC

• Java Database Connectivity (JDBC)
– Similar to SQL/CLI and ODBC but adapted to

object-oriented Java.
• JDBC drivers are similar to environments

in CLI.
– Platform, implementation, and installation

dependent.
• DriverManager object.

JDBC Connection

• Connect with DriverManager by specifying
the DBMS URL, username, and password.

Connection myCon =
DriverManager.getConnection(

<DB URL>, <username>, <psswd>);

Statements

• Two types of statements:
– Statement can accept any string that is an

SQL statement and execute it.
– PreparedStatement has a fix SQL statement.
Statement s1 = myCon.createStatement();
PreparedStatement s2 =

myCon.createStatement(<SQL-stmt>);

Executing Statements

• JDBC distinguishes between queries and
modifications.

• Both Statement and PreparedStatement
have two methods:
– executeQuery
– executeUpdate

• For Statement the methods take a
parameter.

Example

PreparedStatement s2 =
myCon.createStatement(“SELECT
bar,beer FROM Sells WHERE price <
3.0”);

ResultSet cheapBeers = s2.executeQuery();
Statement s1 = myCon.createStatement();
s1.executeUpdate(“INSERT INTO Sells

Values(‘Spoon’, ‘Bud’, 3.0)”);

Accessing Results

• ResultSet class objects are similar to
cursors.

• Method next() gets the next tuple.
– Must be called once to get the first tuple.
– Returns FALSE when tuples are exausted.

cheepBeers.next()

6

Accessing Attributes

• Call an appropriate method, depending on
the type of attribute, on the ResultSet
object.
– Position of the attribute is a aprameter

• getInt(i), getString(i), getFloat(i).

Example

while (cheepBeers.next()) {
aBar = cheepBeers.getString(1);
aBeers = cheepBeers.getString(2);
/* print out a map to the bar */

}

Parameterized Queries

• PreparedStatements can be
parameterized
– Use ? to denote a parameter.

• Use methods setString, setInt, setFloat.
• Then run executeQuery or update.

