
1

CS 235:
Introduction to Databases

Svetlozar Nestorov

Lecture Notes #15

Queries in PSM

• The following rules apply to the use of
queries:

1. Queries returning a single value can be
used in assignments

2. Queries returning a single tuple can be used
with INTO.

3. Queries returning several tuples can be
used via a cursor.

Cursors

• A cursor serves as a tuple-variable that
ranges over the tuples of the result of a
query.
DECLARE c CURSOR FOR (<query>);

• Opening a cursor evaluates <query>.
OPEN c;

• Closed with CLOSE c;

Fetching Tuples From a Cursor

• Get next tuple:
FETCH c INTO a1, a2, …, ak;
– a1, a2, …, ak are the attributes of the result of

the query of c.
– c is moved to the next tuple.

• A cursor is used by creating a loop around
FETCH.

End of Cursor

• SQL operations return status in
SQLSTATE (in PSM).

• FETCH returns ‘02000’ in SQLSTATE
when no more tuples are found.

• Useful declaration:
DECLARE NotFound CONDITION FOR
SQLSTATE ‘02000’

Cursor Structure
DECLARE c CURSOR FOR…
…
cursorLoop: LOOP

…
FETCH c INTO…;
IF NotFound THEN LEAVE cursorLoop;
END IF;
…

END LOOP;

2

Cursor Example

• Write a procedure that makes free all beers
sold for more than $5 at Spoon.
CREATE PROCEDURE FreeBeer()

DECLARE aBeer VARCHAR[30];
DECLARE aPrice REAL;
DECLARE NotFound CONDITION FOR

SQLSTATE ‘02000’;
DECLARE CURSOR c FOR

SELECT beer, price FROM Sells WHERE bar =
‘Spoon’;

Example
BEGIN

OPEN c;
menuLoop: LOOP

FETCH c INTO aBeer, aPrice;
IF NotFound THEN LEAVE menuLoop END IF;
IF aPrice > 5.00 THEN

UPDATE Sells
SET price = 0
WHERE bar = ‘Spoon’ and beer = aBeer;

END IF;
END LOOP;
CLOSE c;

END;

MySQL Routines
• MySQL’s version of PSM (Persistent,

Stored Modules).
– Stored procedures.
– Functions.

• Brand new feature (in 5.0).
– Adheres to standards (similar to IBM’s DB2,

different from Oracle PL/SQL).
– Bugs possible (bugs.mysql.com)

Procedures
CREATE PROCEDURE <name>(<arglist>)
BEGIN

<declarations>
<statements>

END;

Functions
CREATE PROCEDURE <name>(<arglist>)
RETURNS <type>
BEGIN

<declarations>
<statements>

END;

Arguments

• Argument list has name-mode-type triples.
– Mode: IN, OUT, or INOUT for read-only, write-

only, read/write, respectively.
– Types: standard SQL.

3

Example
• A procedure to add a beer and price to Spoon’s menu:

DELIMITER //
CREATE PROCEDURE addSpoonMenu(

IN b CHAR(20),
IN p REAL)

BEGIN
INSERT INTO Sells
VALUES(‘Spoon', b, p);

END;//
DELIMITER ;
CALL addSpoonMenu(‘Guinness’, 7.50);

Declarations

• Variables
• Conditions
• Cursors
• Handlers
• Must be declared in this order!

Conditions
DECLARE <condName>

CONDITION FOR SQLSTATE <errorStr>

DECLARE <condName>
CONDITION FOR <errorNumber>

• The following conditions are predefined:
– NOT FOUND (no more rows)
– SQLEXCEPTION (error)
– SQLWARNING (warning)

Handlers
• Define what to do in case of errors (or conditions)

DECLARE { EXIT | CONTINUE }
HANDLER FOR

{<errorNum> |
SQLSTATE <errorStr> |
<condName> }

SQL statement

• Common practice: set a flag for CONTINUE handlers and
check inside stored procedure.

Body Constructs
• Assignments:

SET<variable> = <expression>
– Variables must be declared.

• Branches
IF <condition> THEN

<statement(s)>
ELSE

<statement(s)>
END IF;

Queries in Routines

1. Single-row selects allow retrieval into a
variable of the result of a query that is
guaranteed to produce one tuple.

2. Cursors allow the retrieval of many
tuples, with the cursor and a loop used to
process each in turn.

4

Cursors in MySQL

• The cursor declaration is:
DECLARE <curName>

CURSOR FOR <query>;
• Fetching is done with:

FETCH c INTO <variables>;

Example (1/3)

• The FreeBeer in MySQL:

CREATE PROCEDURE FreeBeer()
BEGIN

DECLARE aBeer CHAR(20);
DECLARE aPrice REAL;
DECLARE flag INT DEFAULT 0;

Example (2/3)
DECLARE menu CURSOR FOR

SELECT beer, price
FROM Sells
WHERE bar = ‘Spoon’;

DECLARE CONTINUE HANDLER
FOR NOT FOUND
SET flag = 1;

Example (3/3)

OPEN menu;

REPEAT
FETCH menu INTO aBeer, aPrice;
IF aPrice > 5.00 THEN

UPDATE Sells
SET price = 0
WHERE bar = ‘Spoon’ AND beer = aBeer;

END IF;
UNTIL flag = 1
END REPEAT;
CLOSE menu;

END;//

