
1

CS 235:
Introduction to Databases

Svetlozar Nestorov

Lecture Notes #14

Triggers (MySQL Version)
CREATE TRIGGER <trigger name>

{BEFORE | AFTER}
{INSERT | UPDATE | DELETE}
ON <table name>
FOR EACH ROW
<SQL statements>

Example
• Whenever we insert a new tuple into Sells,

make sure the beer mentioned is also
mentioned in Beers, and insert it (with a
null manufacturer) if not.
CREATE TRIGGER BeerTrig
AFTER INSERT ON Sells
FOR EACH ROW

BEGIN
INSERT IGNORE INTO Beers(name)
VALUES(new.beer);

END;

Options

• AFTER triggers cannot change the value
of the inserted/updated tuple.

• BEFORE triggers can change the value
of the inserted/updated tuple.

More Options

• INSERT can be DELETE or UPDATE
• FOR EACH ROW can be omitted, with

an important effect: the action is done
once for the relation(s) consisting of all
changes.
• MySQL recognized only “FOR EACH ROW”

Explanation
• There are two special (transition) variables new

and old, representing the new and old tuple in
the change.
– old makes no sense in an insert, and new makes no

sense in a delete.

2

More Explanations
• The action is any statement allowed in a MySQL

function
– Simplest form: surround one or more SQL statements

with BEGIN and END.
– However, select-from-where has a limited form.

• Need to (temporarily) redefine default delimiter
(;) to another character, e.g. ($)

• MySQL triggers are part of the database
schema, like tables or views.

Even More Explanations

• Important MySQL constraint: the action
cannot change the relation that triggers
the action.

• MySQL returns an error only at run time.

Example
• Maintain a list of all the bars that raise their price for

some beer by more than $1. RipoffBars(bar)
DELIMITER //

CREATE TRIGGER PriceTrig
AFTER UPDATE ON Sells
FOR EACH ROW

BEGIN
IF (NEW.price > OLD.price + 1) THEN

INSERT INTO RipoffBars VALUES(NEW.bar);
END IF;

END; //

DELIMITER ;

Attribute Checks with Triggers

• Create two triggers BEFORE INSERT
and BEFORE UPDATE

– What about BEFORE DELETE?
• The triggers check attribute constraint

and if not satisfied make a modification
that will be rejected, so the triggering
INSERT or UPDATE will fail.

Example
CREATE TABLE Sells (

bar CHAR(20) NOT NULL,
beer CHAR(20),
price REAL;

);

• Check that the price is not more than $12.

Example
CREATE TRIGGER PriceInsTrig
BEFORE INSERT ON Sells
FOR EACH ROW

BEGIN
IF (NEW.price > 12) THEN

SET NEW.bar = NULL;
END IF;

END; //

3

Example
CREATE TRIGGER PriceUpdTrig
BEFORE UPDATE ON Sells
FOR EACH ROW

BEGIN
IF (NEW.price > 12) THEN

SET NEW.bar = NULL;
END IF;

END; //

SQL Triggers

• Covered in the book.
• Some differences, including:

1. The MySQL restriction about not modifying
the relation of the trigger or other relations
linked to it by constraints is not present in
SQL.

2. The action in SQL is a list of (restricted) SQL
statements.

DB Application Programming
• Application is written in general-purpose

programming language: C, C++, Java…
– Not in SQL!

• Application-driven database queries.
– E.g., user registers, sends a message.

• Impedance mismatch:
– Sets (relations) are first class objects in DBMS,

but not in C, Java…
– Vice versa for pointers, conditional statements.

Interface Solutions

1. Extend SQL with general-purpose
programming: PSM.

2. Execute DB queries within application
code: embedded SQL.

3. Call function from DB library: call-level
interface (CLI), ODBC, JDBC.

Persistent Stored Modules

• Stored procedures as DB elements.
• Combine general-purpose programming

with SQL.
• Extends functionality of DBMS.

Basic PSM Form: Procedures

CREATE PROCEDURE <name> (
<parameters>)

<declarations>
<body>;

4

Basic PSM Form: Functions

CREATE FUNCTION <name> (
<parameters>) RETURNS <type>
<declarations>
<body>;

Parameters in PSM

• For each parameter:
– Mode: IN, OUT, INOUT
– Name: as usual
– Type: as usual

• Examples:
IN newprice NUMBER
OUT oldprice NUMBER
INOUT drinker VARCHAR[30]

Example

• A procedure to add a beer and price to
Spoon’s menu:
CREATE PROCEDURE spoonMenu(

IN beer VARCHAR[30],
IN price NUMBER

)
INSERT INTO Sells

VALUES(‘Spoon’, beer, price);

Invoking Procedures

• Using SQL/PSM command CALL
CALL spoonMenu(‘BudHeavy’, ‘7.50’)

• Functions can be used in SQL
expressions, provided that the return type
is appropriate.

PSM Statements

• DECLARE <name> <type>;
• SET <variable> = <expression>
• BEGIN <statements> END
• RETURN <expression>

– Does not terminate execution!

IF Statements

• Simplest form:
IF <condition> THEN

<statements> END IF;
• With ELSE:

IF…THEN…ELSE…END IF;
• Nested:

IF…THEN…ELSEIF…ELSEIF…ELSE…END
IF;

5

Loops
• Basic form:

LOOP <statements> END LOOP;
• Exiting loops:

<loop name>: LOOP
…LEAVE <loop name>…

END LOOP;
• Other forms:

WHILE <cond> DO <stmts> END WHILE;
REPEAT <stmts> UNTIL <cond> END

REPEAT;

