
1

CS 235:
Introduction to Databases

Svetlozar Nestorov

Lecture Notes #13

Outline

• Active elements
– Maintain database integrity and consistency.
– Part of database schema.

• Constraints

Constraints
• Restrictions on the data in your database.
• Commercial relational systems allow much

more fine-tuning of constraints than do the
modeling languages we learned earlier.

• In essence: SQL programming is used to
describe constraints.

Constraint Types
1. Primary key declarations (already covered).
2. Foreign-keys = referential integrity constraints.
3. Attribute- and tuple-based checks = constraints

within relations.
4. SQL Assertions = global constraints.

– Not found in MySQL.
5. MySQL Triggers.

– A substitute for assertions.

Foreign Keys
• In relation R a clause that attribute A references

S(B) says that whatever values appear in the A
column of R must also appear in the B column of
relation S.

• B must be declared the primary key (or unique)
for S.
– Why is this restriction necessary?

Example
CREATE TABLE Beers (

name CHAR(20) PRIMARY KEY,
manf CHAR(20)

);

CREATE TABLE Sells (
bar CHAR(20),
beer CHAR(20) REFERENCES

Beers(name) ,
price REAL

);

2

Alternative Declaration
• Add another element declaring the foreign key,

as:
CREATE TABLE Sells (

bar CHAR(20),
beer CHAR(20),
price REAL,
FOREIGN KEY (beer) REFERENCES Beers(name)

);

• Extra element essential if the foreign key is more
than one attribute.

• MySQL recognizes only this declaration.

Foreign Keys in MySQL
• Both the referenced and referencing

tables must be of type InnoDB.
– Default type is MyISAM (indexed sequential

access method)
• The FOREIGN KEY syntax must be

used.
• In the referenced table, there must be an

index on the referenced columns
– PRIMARY KEY or UNIQUE create one

automatically.

MySQL Example
CREATE TABLE Beers (

name CHAR(20) PRIMARY KEY,
manf CHAR(20)

) TYPE = InnoDB;

CREATE TABLE Sells (
bar CHAR(20),
beer CHAR(20),
price REAL,
FOREIGN KEY (beer) REFERENCES Beers(name)

) TYPE = InnoDB;

Foreign Key Constraint Violations

1. Insert or update a Sells tuple so it refers to a
nonexistent beer.
• Always rejected.

2. Delete or update a Beers tuple that has a beer
value some Sells tuples refer to:

a) Default: reject the modification.
b) Cascade: Ripple changes to referring Sells

tuple.
c) Set Null: Change referring tuples to have

NULL in referring components.

Example (Cascade)
• Delete Bud.
• Cascade deletes all Sells tuples that mention

Bud.

• Update Bud to Budweiser.
• Change all Sells tuples with Bud in beer column

to be Budweiser.

Example (Set-Null)

• Delete Bud.
• Set-null makes all Sells tuples with Bud in

the beer component have NULL there.

• Update Bud to Budweiser.
• Set-null makes all Sells tuples with Bud in

the beer component have NULL there.

3

Selecting a Policy
• Add ON [DELETE, UPDATE] [CASCADE, SET NULL] to

foreign key declaration.
CREATE TABLE Sells (

bar CHAR(20),
beer CHAR(20),
price REAL,
FOREIGN KEY (beer) REFERENCES Beers(name)

ON DELETE SET NULL
ON UPDATE CASCADE

);
• Correct policy is a design decision.

– E.g., what does it mean if a beer goes away? What if a beer
changes its name?

Attribute-Based Checks
• Follow an attribute by a condition that must hold

for that attribute in each tuple of its relation.
• CHECK (condition).

– Condition may involve the checked attribute.
– Other attributes and relations may be involved, but

only in subqueries.
– MySQL: CHECK parsed but ignored.

• Condition is checked only when the associated
attribute changes (i.e., an insert or update
occurs).

Example
CREATE TABLE Sells (

bar CHAR(20),
beer CHAR(20) CHECK (beer IN (

SELECT name
FROM Beers)),

price REAL CHECK (price <= 5.00)
);
• Check on beer is like a foreign-key constraint,

except:
– The check occurs only when we add a tuple or change

the beer in an existing tuple, not when we delete a
tuple from Beers.

Tuple-Based Checks

• Separate element of table declaration.
• Form: like attribute-based check.
• But condition can refer to any attribute of

the relation.
– Or to other relations/attributes in subqueries.
– Again: MySQL parses but ignores checks.

• Checked whenever a tuple is inserted or
updated.

Example

• Only Ripoff bar can sell beer for more than
$10.
CREATE TABLE Sells (

bar CHAR(20),
beer CHAR(20),
price REAL,
CHECK(bar = ‘Ripoff’ OR

price <= 10.00)
);

SQL Assertions

• Database-schema constraint.
• Not present in MySQL.
• Checked whenever a mentioned relation

changes.
• Syntax:

CREATE ASSERTION <name>
CHECK(<condition>);

4

Example
• No bar may charge an average of more than $5

for beer. Sells(bar, beer, price)

CREATE ASSERTION NoRipoffBars
CHECK(NOT EXISTS(

SELECT bar
FROM Sells
GROUP BY bar
HAVING 5.0 < AVG(price)
)

);

• Checked whenever Sells changes.

Example
• There cannot be more bars than drinkers.

Bars(name, addr, license) Drinkers(name, addr, phone)

CREATE ASSERTION FewBars
CHECK(

(SELECT COUNT(*) FROM Bars) <=
(SELECT COUNT(*) FROM Drinkers)

);

• Checked whenever Bars or Drinkers changes.

Example Aggregation Queries
• Find the person who likes the most beers.
• Find the most likely pairing of a person and a

beer.
– Most bars, frequented by a person, that serve the

beer.
– Another condition?

• Find the most likely couple: drinkers that
frequent the most bars and like the most beers
in common.
– Can we weigh number of bars and beers differently?

