
1

CS 235:
Introduction to Databases

Svetlozar Nestorov

Lecture Notes #11

Outline

• More aggregation queries
– Grouping.
– Having clause

• Database modifications
– Insertion
– Deletion
– Updates

Grouping
• Follow select-from-where by GROUP BY and a

list of attributes.
• The relation that is the result of the FROM and

WHERE clauses is grouped according to the
values of these attributes, and aggregations take
place only within a group.

• Find the average price for each beer.
SELECT beer, AVG(price)
FROM Sells
GROUP BY beer;

Example
• Find, for each drinker, the average price of

Bud at the bars they frequent.
SELECT drinker, AVG(price)
FROM Frequents, Sells
WHERE beer = 'Bud' AND

Frequents.bar = Sells.bar
GROUP BY drinker;

• Note: grouping occurs after the × and σ
operations.

Restriction on SELECT Lists With
Aggregation

• If any aggregation is used, then each element of
a SELECT clause must either be aggregated or
appear in a group-by clause.

• The following might seem a tempting way to find
the bar that sells Bud the cheapest:
SELECT bar, MIN(price)
FROM Sells
WHERE beer = 'Bud';

• But it is illegal in SQL.
• How would we find that bar?

HAVING Clauses

• HAVING clauses are selections on groups,
just as WHERE clauses are selections on
tuples.

• Condition can use the tuple variables or
relations in the FROM and their attributes,
just like the WHERE can.
– But the t.v.'s range only over the group.
– And the attribute better make sense within a

group; i.e., be one of the grouping attributes.

2

Example
• Find the average price of those beers that are either

served in at least 3 bars or manufactured by Anheuser-
Busch.
SELECT beer, AVG(price)
FROM Sells
GROUP BY beer
HAVING COUNT(*) >= 3 OR

beer IN (
SELECT name
FROM Beers
WHERE manf = 'Anheuser-Busch'
);

Another Example

• Find, for each manufacturer, the beer with
highest average price.

DB Modifications

• Results of modifications last beyond your
session!

• Three types of modifications:
– Insert new tuple.
– Delete current tuple.
– Update current tuple.

• Update is not strictly necessary since it can be
substituted by a delete and an insert.

Insertion
• INSERT INTO relation VALUES (list of values).
• Inserts the tuple = list of values, associating

values with attributes in the order the attributes
were declared.
– You can also list the attributes as arguments of the

relation.
• Insert the fact that Sally likes Bud in

Likes(drinker, beer)
INSERT INTO Likes(drinker, beer) VALUES('Sally', 'Bud');

Insertion of the Result of a
Query

• INSERT INTO relation (subquery).
• Create a (unary) table of all Sally's

potential buddies, i.e., the people who
frequent bars that Sally also frequents.

• Frequents(drinker, bar)
CREATE TABLE PotBuddies(

name char(30)
);

Example

INSERT INTO PotBuddies
(SELECT DISTINCT d2.drinker
FROM Frequents d1, Frequents d2
WHERE d1.drinker = 'Sally' AND

d2.drinker <> 'Sally' AND
d1.bar = d2.bar

);

3

Bulk Loading

• Insert many tuples from a data file with a
single command.
LOAD DATA
LOCAL INFILE “likes.dat”
INTO TABLE Likes;

• The keyword LOCAL means that the data
file is on the client machine.

Deletion
DELETE FROM relation WHERE condition.
• Deletes all tuples satisfying the condition from

the named relation.
• Sally no longer likes Bud.

DELETE FROM Likes
WHERE drinker = 'Sally' AND beer = 'Bud';

• Make the Likes relation empty.
DELETE FROM Likes;
– In practice, it’s more efficient to drop and create the

table.

Example
• Delete all beers for which there is another beer

by the same manufacturer.
DELETE FROM Beers b
WHERE EXISTS

(SELECT name
FROM Beers
WHERE manf = b.manf AND

name <> b.name);
• Note alias for relation from which deletion

occurs.
• Not (yet) allowed in MySQL.

Semantics

• Semantics is tricky. If A.B. makes Bud and
BudLite (only), does deletion of Bud make
BudLite not satisfy the condition?

• SQL semantics: all conditions in
modifications must be evaluated by the
system before any modifications due to
that modification command occur.
– In Bud/Budlite example, we would first identify

both beers as targets, and then delete both.

Updates
• UPDATE relation SET list of assignments

WHERE condition.
• Drinker Leo's phone number is 555-1212.

UPDATE Drinkers
SET phone = '555-1212'
WHERE name = ‘Leo;

• Make $4 the maximum price for beer.
UPDATE Sells
SET price = 4.00
WHERE price > 4.00;

