
1

CS 235:
Introduction to Databases

Svetlozar Nestorov

Lecture Notes #10

Outline

• Multirelation SQL queries
• Subqueries

– ANY, ALL, EXISTS, IN
• Aggregation

Multirelation Queries
• List of relations in FROM clause.
• Relation-dot-attribute disambiguates attributes

from several relations.
• Example: Find the beers that the frequenters of

Spoon like.
• Likes(drinker, beer) Frequents(drinker, bar)

SELECT beer
FROM Frequents, Likes
WHERE bar = ‘Spoon' AND Frequents.drinker =

Likes.drinker;

Formal Semantics

• Same as for single relation, but start with the
product of all the relations mentioned in the
FROM clause:
– Apply selection (for bags) – WHERE clause
– Apply projection (extended) – SELECT clause

Operational Semantics

• Consider a tuple variable for each relation in the
FROM.

• Imagine these tuple variables each pointing to a
tuple of their relation, in all combinations (e.g.,
nested loops).

• If the current assignment of tuple-variables to
tuples makes the WHERE true, then output the
attributes of the SELECT.

Explicit Tuple Variables
• Sometimes we need to refer to two or more

copies of a relation.
• Use tuple variables as aliases of the relations.
• Example: Find pairs of beers by the same

manufacturer.

SELECT b1.name, b2.name
FROM Beers b1, Beers b2
WHERE b1.manf = b2.manf AND

b1.name < b2.name;

2

Explicit Tuple Variables

• SQL permits AS between relation and its
tuple variable

• Note that b1.name < b2.name is needed to
avoid producing (Bud, Bud) and to avoid
producing a pair in both orders.

Examples

• Find all bars that sell two different beers at
the same price.

• Find all bars that sell three different beers
at the same price.

• Find all drinkers that frequent a bar that
serves their favorite beer.

Subqueries

• Result of a select-from-where query
can be used in the where-clause of
another query.

• Simplest case: subquery returns a
single, unary tuple (like a constant).

Example
• Find bars that serve Miller at the same price

Spoon charges for Bud
SELECT bar
FROM Sells
WHERE beer = 'Miller' AND price =

(SELECT price
FROM Sells
WHERE bar = ‘Spoon’ AND beer = ‘Bud’);

• Scoping rule: an attribute refers to the most
closely nested relation with that attribute.

• Parentheses around subquery are essential.

The IN Operator
• Tuple IN relation is true iff the tuple is in the

relation.
• Find the name and manufacturer of beers that

Leo likes
Beers(name, manf) and Likes(drinker, beer).

SELECT *
FROM Beers
WHERE name IN

(SELECT beer
FROM Likes
WHERE drinker = ‘Leo’);

The EXISTS operator
• EXISTS(relation) is true iff the relation is

nonempty.
• Find the beers that are the unique beer by their

manufacturer:
SELECT name
FROM Beers b1
WHERE NOT EXISTS

(SELECT *
FROM Beers
WHERE manf = b1.manf AND

name <> b1.name);

3

Correlated Subquery
• Scoping rule: to refer to outer Beers in the inner

subquery, we need to give the outer a tuple
variable, b1 in this example.

• A subquery that refers to values from a
surrounding query is called a correlated
subquery.

• A correlated subquery must be evaluated (by the
system) for every tuple in the outer query.

Quantifiers
• ANY and ALL behave as existential and

universal quantifiers, respectively.
• Find the beer(s) sold for the highest price, given

Sells(bar, beer, price)
SELECT beer
FROM Sells
WHERE price >= ALL

(SELECT price
FROM Sells);

Example
• Find the beer(s) not sold for the lowest price,

given Sells(bar, beer, price).

Union, Intersection, Difference
• (subquery) UNION (subquery) produces the

union of the two relations.
• Similarly for INTERSECT, EXCEPT =

intersection and set difference.
– Not supported by MySQL but you can write an

equivalent query.

Example
• Find the drinkers and beers such that the

drinker likes the beer and frequents a bar
that serves it.
(SELECT * FROM Likes)

INTERSECT
(SELECT drinker, beer
FROM Sells, Frequents
WHERE Frequents.bar = Sells.bar
);

Forcing Set/Bag Semantics
• Default for select-from-where is bag; default for

union is set.
– Why? Saves time of not comparing tuples as we

generate them.
• Force set semantics with DISTINCT after

SELECT.
– But make sure the extra time is worth it.

• Force bag semantics with ALL after UNION.

4

Example

• Find the different prices charged for beers.
SELECT DISTINCT price
FROM Sells;

• Find all beers liked by Leo or Jim.

Aggregations
• Sum, avg, min, max, and count apply to

attributes/columns.
• Count(*) applies to tuples.
• Use these in lists following SELECT.
• Find the average price of Bud.

SELECT AVG(price)
FROM Sells
WHERE beer = 'Bud';

• Counts each tuple (for each bar that sells Bud)
once.

Eliminating Duplicates Before
Aggregation

• Find the number of different prices at
which Bud is sold.
SELECT COUNT(DISTINCT price)
FROM Sells
WHERE beer = 'Bud';

• DISTINCT may be used in any
aggregation, but typically only makes
sense with COUNT.

