CS 235:
Introduction to Databases

Svetlozar Nestorov

Lecture Notes #10

Outline

* Multirelation SQL queries
* Subqueries

—ANY, ALL, EXISTS, IN
» Aggregation

Multirelation Queries

List of relations in FROM clause.

Relation-dot-attribute disambiguates attributes
from several relations.

Example: Find the beers that the frequenters of
Spoon like.

Likes(drinker, beer) Frequents(drinker, bar)

SELECT beer
FROM Frequents, Likes

WHERE bar = ‘Spoon’ AND Frequents.drinker =
Likes.drinker;

Formal Semantics

» Same as for single relation, but start with the
product of all the relations mentioned in the
FROM clause:

— Apply selection (for bags) — WHERE clause
— Apply projection (extended) — SELECT clause

Operational Semantics

Consider a tuple variable for each relation in the
FROM.

Imagine these tuple variables each pointing to a
tuple of their relation, in all combinations (e.g.,
nested loops).

If the current assignment of tuple-variables to
tuples makes the WHERE true, then output the
attributes of the SELECT.

Explicit Tuple Variables

» Sometimes we need to refer to two or more
copies of a relation.

» Use tuple variables as aliases of the relations.

» Example: Find pairs of beers by the same
manufacturer.

SELECT b1.name, b2.name

FROM Beers b1, Beers b2

WHERE b1.manf = b2.manf AND
b1.name < b2.name;




Explicit Tuple Variables

» SQL permits AS between relation and its
tuple variable

* Note that b1.name < b2.name is needed to
avoid producing (Bud, Bud) and to avoid
producing a pair in both orders.

Examples

Find all bars that sell two different beers at
the same price.

Find all bars that sell three different beers
at the same price.

Find all drinkers that frequent a bar that
serves their favorite beer.

Subqueries

* Result of a select-from-where query
can be used in the where-clause of
another query.

« Simplest case: subquery returns a
single, unary tuple (like a constant).

Example

Find bars that serve Miller at the same price
Spoon charges for Bud
SELECT bar
FROM Sells
WHERE beer = 'Miller' AND price =

(SELECT price

FROM Sells

WHERE bar = ‘Spoon” AND beer = ‘Bud’);
Scoping rule: an attribute refers to the most
closely nested relation with that attribute.

Parentheses around subquery are essential.

The IN Operator

» Tuple IN relation is true iff the tuple is in the
relation.

» Find the name and manufacturer of beers that
Leo likes

Beers(name, manf) and Likes(drinker, beer).

SELECT *
FROM Beers
WHERE name IN
(SELECT beer
FROM Likes
WHERE drinker = ‘Le0’);

The EXISTS operator

EXISTS(relation) is true iff the relation is
nonempty.
Find the beers that are the unique beer by their
manufacturer:
SELECT name
FROM Beers b1
WHERE NOT EXISTS

(SELECT *

FROM Beers

WHERE manf = b1.manf AND

name <> b1.name);




Correlated Subquery

» Scoping rule: to refer to outer Beers in the inner
subquery, we need to give the outer a tuple
variable, b1 in this example.

» A subquery that refers to values from a
surrounding query is called a correlated
subquery.

A correlated subquery must be evaluated (by the
system) for every tuple in the outer query.

Quantifiers

ANY and ALL behave as existential and
universal quantifiers, respectively.

Find the beer(s) sold for the highest price, given
Sells(bar, beer, price)

SELECT beer
FROM Sells
WHERE price >= ALL
(SELECT price
FROM Sells);

Example

+ Find the beer(s) not sold for the lowest price,
given Sells(bar, beer, price).

Union, Intersection, Difference

(subguery) UNION (subquery) produces the

union of the two relations.

Similarly for INTERSECT, EXCEPT =

intersection and set difference.

— Not supported by MySQL but you can write an
equivalent query.

Example

* Find the drinkers and beers such that the
drinker likes the beer and frequents a bar
that serves it.

(SELECT * FROM Likes)
INTERSECT

(SELECT drinker, beer

FROM Sells, Frequents

WHERE Frequents.bar = Sells.bar

)

Forcing Set/Bag Semantics

Default for select-from-where is bag; default for

union is set.

— Why? Saves time of not comparing tuples as we
generate them.

Force set semantics with DISTINCT after

SELECT.

— But make sure the extra time is worth it.

Force bag semantics with ALL after UNION.




Example

 Find the different prices charged for beers.

SELECT DISTINCT price
FROM Sells;

 Find all beers liked by Leo or Jim.

Aggregations

» Sum, avg, min, max, and count apply to

attributes/columns.

» Count(*) applies to tuples.

Use these in lists following SELECT.

Find the average price of Bud.
SELECT AVG(price)

FROM Sells

WHERE beer = 'Bud',

Counts each tuple (for each bar that sells Bud)
once.

Eliminating Duplicates Before
Aggregation
» Find the number of different prices at

which Bud is sold.
SELECT COUNT(DISTINCT price)
FROM Sells
WHERE beer = 'Bud’;

* DISTINCT may be used in any
aggregation, but typically only makes
sense with COUNT.




