CS 235: Introduction to Databases

Svetlozar Nestorov

Lecture Notes #9

SQL

- Structured Query Language (SQL)
 - The language of databases
 - Based on relational algebra
 - extended algebra operations
 - · other extensions.

SQL Queries

· General form:

SELECT attributes you want
FROM relations
WHERE conditions about tuples from relations:

 Read and write in this order: from-where-select

Running Example

- Beers(<u>name</u>, manf)
- Bars(name, addr, license)
- Drinkers(<u>name</u>, addr, phone)
- Likes(drinker, beer)
- Sells(<u>bar</u>, <u>beer</u>, price)
- Frequents(drinker, bar)

Example Query

- What beers are made by Anheuser-Busch?
- Beers(name, manf)

SELECT name FROM Beers

WHERE manf = 'Anheuser-Busch';

• Result: □

name
BudLite
Bud
Michelob

Formal Semantics of Single-Relation SQL Query

- Start with the relation in the FROM clause.
- 2. Apply (bag) σ , using condition in WHERE clause.
- 3. Apply (extended, bag) π using attributes in SELECT clause.

Equivalent Operational Semantics

- Imagine a *tuple variable* ranging over all tuples of the relation. For each tuple:
 - Check if it satisfies the WHERE clause.
 - Print the values of terms in SELECT, if so.

Star as List of All Attributes

• Beers(name, manf)

SELECT * FROM Beers

WHERE manf = 'Anheuser-Busch';

Result:

name	manf
BudLite	Anheuser-Busch
Bud	Anheuser-Busch
Michelob	Anheuser-Busch

Renaming Columns

• Beers(name, manf)

SELECT name AS beer FROM Beers WHERE manf = 'Anheuser-Busch';

Result:

beer	
BudLite	
Bud	
Michelob	

Expressions as Values in Columns

• Sells(<u>bar</u>, <u>beer</u>, price)

SELECT bar, beer, price*0.74 AS priceInEuros

FROM Sells:

bar	beer	priceInEuros
Spoon	Amstel	2.96
Spoon	Guinness	5.18
Whiskey	Guinness	5.18
Whiskey	Bud	3.7

· Note: no WHERE clause is OK.

Constant Values

- If you want an answer with a particular string in each row, use that constant as an expression.
- · Likes(drinker, beer)

SELECT drinker, 'connoisseur' AS status FROM Likes

WHERE beer = 'Guinness';

Result:

drinker	status
David	connoisseur
Ryan	connoisseur
Paul	connoisseur

Example

• Find the price Spoon charges for Bud. Sells(bar, beer, price)

SELECT price FROM Sells

WHERE bar = 'Spoon' AND beer = 'Bud';

- Conditions in WHERE clause can use logical operators AND, OR, NOT and parentheses in the usual way.
- SQL is case insensitive. Keywords like SELECT or AND can be written upper/lower case as you like.
- · Only inside quoted strings does case matter.

Example 2

 Find the names of all bars that sell for less than \$4 at least one beer that's not Bud.

String Patterns

- % stands for any string.
- _ stands for any one character.
- "Attribute LIKE pattern" is a condition that is true if the string value of the attribute matches the pattern.
 - Also NOT LIKE for negation.

Example

- Find drinkers whose phone has exchange 555.
- Drinkers(name, addr, phone)

SELECT name FROM Drinkers WHERE phone LIKE '%555-____';

· Note patterns must be quoted, like strings

Nulls

- In place of a value in a tuple's component.
- · Interpretation is not exactly missing value.
- There could be many reasons why no value is present, e.g., value inappropriate.

Comparing Nulls to Values

- 3rd truth value UNKNOWN.
- A query only produces tuples if the WHERE-condition evaluates to TRUE (UNKNOWN is not sufficient).

Example

SELECT bar FROM Sells WHERE price < 2.00 OR price >= 2.00; UNKNOWN UNKNOWN

 The result is empty, even though the WHERE condition is a tautology.

3-Valued Logic

- Think of true = 1; false = 0, and unknown = 1/2.
- Then:
 - -AND = min.
 - -OR = max.
 - $-\mathsf{NOT}(x) = 1 x.$

Some Key Laws Do Not Hold

- Example: Law of the excluded middle, i.e.,
 p OR NOT p = TRUE
- For 3-valued logic: if p = unknown, then left side = max $(1/2,(1-1/2)) = 1/2 \neq 1$.
- Like bag algebra, there is no way known to make 3-valued logic conform to all the laws we expect for sets/2-valued logic, respectively.

Example Query

- Find all bars that do not sell Bud for more than \$5.
 - Two interpretations?