
1

CS 235:
Introduction to Databases

Svetlozar Nestorov

Lecture Notes #8

Why Decomposition “Works”?
• What does it mean to “work”? Why can’t

we just tear sets of attributes apart as we
like?

• Answer: the decomposed relations need to
represent the same information as the
original.
– We must be able to reconstruct the original

from the decomposed relations.
• Projection and join connect the original

and decomposed relations

Example (1/3)

R =

• Recall we decomposed this relation as:

BudLiteA.B.BudLite123 W GrandAnna

Blonde AleG.I.Blonde Ale111 E OhioMike

Blonde AleA.B.Bud111 E OhioMike

favoriteBeermanfbeersLikedaddrname

R

Drinkers1 Drinkers2

Drinkers3 Drinkers4

Example (2/3)
Project onto Drinkers1(name, addr, favoriteBeer):

Project onto Drinkers3(beersLiked, manf):

BudLite123 W GrandAnna
Blonde Ale111 E OhioMike

favoriteBeeraddrname

A.B.BudLite
G.I.Blonde Ale
A.B.Bud
manfbeersLiked

Example (3/3)

Project onto Drinkers4(name, beersLiked):

BudLiteAnna
Blonde AleMike
BudMike

beersLikedname

Reconstruction

• Can we figure out the original relation from
the decomposed relations?

• Sometimes, if we natural join the relations.

2

Example

Drinkers3 Drinkers4 =

• Join of above with Drinkers1 = original R.

A.B.BudLiteAnna

G.I.Blonde AleMike

A.B.BudMike
manfbeersLikedname

Theorem
• Suppose we decompose a relation with
schema XYZ into XY and XZ and project
the relation for XYZ onto XY and XZ. Then
XY XZ is guaranteed to reconstruct
XYZ if and only if X →→Y (or
equivalently, X →→ Z).

• Usually, the MVD is really a FD, X → Y or
X →Z.

Implications
• BCNF: When we decompose XYZ into XY

and XZ, it is because there is a FD X → Y
or X → Z that violates BCNF.
– Thus, we can always reconstruct XYZ from its

projections onto XY and XZ.
• 4NF: when we decompose XYZ into XY

and XZ, it is because there is an MVD X
→→ Y or X →→ Z that violates 4NF.
– Again, we can reconstruct XYZ from its

projections onto XY and XZ.

Bag Semantics

• A relation (in SQL, at least) is really a bag.
• It may contain the same tuple more than

once, although there is no specified order
(unlike a list).

• Example: {1,2,1,3} is a bag and not a set.
• Select, project, and join work for bags as

well as sets.
– Just work on a tuple-by-tuple basis, and don't

eliminate duplicates.

Bag Operations
• Union: sum the times an element appears in the

two bags.
• Example: {1,2,1} ∪ {1,2,3,3} = {1,1,1,2,2,3,3}.
• Intersection: take the minimum of the number of

occurrences in each bag.
• Example: {1,2,1} ∩ {1,2,3,3} = {1,2}
• Difference: subtract the number of occurrences

in the two bags.
• Example: {1,2,1} – {1,2,3,3} = {1}.

Different Laws for Bags

• Some familiar laws continue to hold for
bags.
– Examples: union and intersection are still

commutative and associative.
• But other laws that hold for sets do not

hold for bags!

3

Example

• R ∩ (S ∪ T) ≡ (R ∩ S) ∪ (R ∩ T) holds for
sets but not for bags!

• Let R, S, and T each be the bag {1}.
• Left side: S ∪ T = {1,1}; R ∩ (S ∪ T) = {1}.
• Right side: R ∩ S = R ∩ T = {1};

(R ∩ S) ∪ (R ∩ T) = {1} ∪ {1} = {1,1} ≠ {1}.

Extended Relational Algebra

• Adds features needed for SQL, bags.
• Duplicate-elimination operator δ.
• Extended projection.
• Sorting operator τ.

Duplicate Elimination
• δ(R) = relation with one copy of each tuple that

appears one or more times in R.

6Guinness
7Guinness

5Bud
7Guinness

4Amstel
pricebeer

6Guinness
7Guinness
5Bud

4Amstel
pricebeer

Beers δ(Beers)

Sorting

• τL(R) = list of tuples of R, ordered
according to attributes on list L.

• Note that result type is outside the normal
types (set or bag) for relational algebra.
– Consequence: τ cannot be followed by other

relational operators.

Extended Projection
• Allow the columns in the projection to be

functions of one or more columns in the
argument relation.

1
4
4
4
2
cost

6Guinness
7Guinness

5Bud
8Guinness

4Amstel
pricebeer

Beers πprice,price,price-cost(Beers)

5
8
7
6
4
price2

26
37

45
48

24
price-costprice1

Sad Drinkers Example

• Find all drinkers that only frequent bars
that do not sell their favorite beer.

Sells(bar, beer, price)
Bars(name, addr)
Frequents(drinker, bar)
Drinker(name, addr, favBeer)

