CS 235:
Introduction to Databases

Svetlozar Nestorov

Lecture Notes #8

Why Decomposition “Works”?

* What does it mean to “work”? Why can’t
we just tear sets of attributes apart as we
like?

» Answer: the decomposed relations need to
represent the same information as the
original.

— We must be able to reconstruct the original
from the decomposed relations.

 Projection and join connect the original
and decomposed relations

Example (1/3)

name addr beersLiked | manf | favoriteBeer
R = Mike 111 E Ohio Bud AB. |Blonde Ale
Mike 111 E Ohio Blonde Ale | G.l. |Blonde Ale
Anna 123 W Grand | BudLite AB. |BudLite

* Recall we decomp%sed this relation as:

/\
Drinkersl Drinkers?2

T~

Drinkers3 Drinkers4

Example (2/3)

Project onto Drinkers1(name, addr, favoriteBeer):

name addr favoriteBeer
Mike 111 E Ohio Blonde Ale
Anna 123 W Grand | BudLite

Project onto Drinkers3(beersLiked, manf):

beersLiked | manf
Bud AB.
Blonde Ale | G.I.
BudLite AB.

Example (3/3)

Project onto Drinkers4(name, beersLiked):

name beersLiked
Mike Bud
Mike Blonde Ale
Anna BudLite

Reconstruction

» Can we figure out the original relation from
the decomposed relations?

» Sometimes, if we natural join the relations.

Example
Drinkers3 D< Drinkers4 =
name beersLiked | manf
Mike Bud AB.
Mike Blonde Ale | G.l.
Anna BudLite AB.

+ Join of above with Drinkers1 = original R.

Theorem

* Suppose we decompose a relation with
schema XYZ into XY and XZ and project
the relation for XYZ onto XY and XZ. Then
XY < XZis guaranteed to reconstruct
XYZ if and only if X ->—Y (or
equivalently, X -»— Z).

* Usually, the MVD is really a FD, X — Y or
X >Z.

Implications

* BCNF: When we decompose XYZ into XY
and XZ, itis because thereisaFD X — Y
or X — Z that violates BCNF.

— Thus, we can always reconstruct XYZ from its
projections onto XY and XZ.

* 4NF: when we decompose XYZ into XY
and XZ, it is because there is an MVD X
—— Y or X ->— Z that violates 4NF.

— Again, we can reconstruct XYZ from its
projections onto XY and XZ.

Bag Semantics

» Arelation (in SQL, at least) is really a bag.

« It may contain the same tuple more than
once, although there is no specified order
(unlike a list).

« Example: {1,2,1,3} is a bag and not a set.

« Select, project, and join work for bags as
well as sets.

— Just work on a tuple-by-tuple basis, and don't
eliminate duplicates.

Bag Operations

* Union: sum the times an element appears in the
two bags.

* Example: {1,2,1} U {1,2,3,3} = {1,1,1,2,2,3,3}.

* Intersection: take the minimum of the number of
occurrences in each bag.

+ Example: {1,2,1} n {1,2,3,3} = {1,2}

« Difference: subtract the number of occurrences
in the two bags.

+ Example: {1,2,1} — {1,2,3,3} = {1}.

Different Laws for Bags

» Some familiar laws continue to hold for
bags.
— Examples: union and intersection are still
commutative and associative.
» But other laws that hold for sets do not
hold for bags!

Example

*RNn(SuT)=(RnNS)u (Rn T)holds for
sets but not for bags!

Let R, S, and T each be the bag {1}.
e Leftside: SUT={1,1}; Rn(Su T)={1}.
* Rightside: RNnS=Rn T={1};

(RAS)U(RAT)={1}u {1} ={1,1}={1}.

Extended Relational Algebra

* Adds features needed for SQL, bags.
* Duplicate-elimination operator 6.

* Extended projection.

« Sorting operator t.

Duplicate Elimination

+ 3(R) = relation with one copy of each tuple that
appears one or more times in R.

Beers 5(Beers)

beer price

beer price
Amstel

Amstel

Guinness -
Guinness

Guinness -
Guinness

Bud

o N|o |~

Guinness
Bud

a|N|N|o |~

Sorting

* 7,(R) = list of tuples of R, ordered
according to attributes on list L.

* Note that result type is outside the normal
types (set or bag) for relational algebra.

— Consequence: t cannot be followed by other
relational operators.

Extended Projection

+ Allow the columns in the projection to be
functions of one or more columns in the
argument relation.

Beers T price,price, price—casl(Beers,)
beer cost | price pricet | price2 price-cost
Amstel 2 4 4 4 2
Guinness 4 6 6 2
Guinness 4 7 7 7 3
Guinness 4 8 8 8 4
Bud 1 5 5 5 4

Sad Drinkers Example

« Find all drinkers that only frequent bars
that do not sell their favorite beer.

Sells(bar, beer, price)

Bars(name, addr)

Frequents(drinker, bar)

Drinker(name, addr, favBeer)

