CS 235: Introduction to Databases

Svetlozar Nestorov

Lecture Notes #8

Why Decomposition "Works"?

- What does it mean to "work"? Why can't we just tear sets of attributes apart as we like?
- Answer: the decomposed relations need to represent the same information as the original.
 - We must be able to reconstruct the original from the decomposed relations.
- Projection and join connect the original and decomposed relations

Example (1/3)

name	addr	beersLiked	manf	favoriteBeer
∕like	111 E Ohio	Bud	A.B.	Blonde Ale
∕like	111 E Ohio	Blonde Ale	G.I.	Blonde Ale
Anna	123 W Grand	BudLite	A.B.	BudLite

• Recall we decomposed this relation as:

Drinkers3 Drinkers4

Example (2/3)

Project onto Drinkers1(name, addr, favoriteBeer):

name	addr	favoriteBeer
Mike	111 E Ohio	Blonde Ale
Anna	123 W Grand	BudLite

Project onto Drinkers3(beersLiked, manf):

beersLiked	manf
Bud	A.B.
Blonde Ale	G.I.
BudLite	A.B.

Example (3/3)

Project onto *Drinkers4*(<u>name</u>, <u>beersLiked</u>):

name	beersLiked
Mike	Bud
Mike	Blonde Ale
Anna	BudLite

Reconstruction

- Can we figure out the original relation from the decomposed relations?
- Sometimes, if we natural join the relations.

Example

name	beersLiked	manf
Mike	Bud	A.B.
Mike	Blonde Ale	G.I.
Anna	BudLite	A.B.

• Join of above with *Drinkers1* = original *R*.

Theorem

- Suppose we decompose a relation with schema XYZ into XY and XZ and project the relation for XYZ onto XY and XZ. Then $XY \bowtie XZ$ is guaranteed to reconstruct XYZ if and only if $X \rightarrow \rightarrow Y$ (or equivalently, $X \rightarrow \rightarrow Z$).
- Usually, the MVD is really a FD, $X \rightarrow Y$ or $X \rightarrow Z$.

Implications

- BCNF: When we decompose XYZ into XY and XZ, it is because there is a FD X → Y or X → Z that violates BCNF.
 - Thus, we can always reconstruct XYZ from its projections onto XY and XZ.
- 4NF: when we decompose XYZ into XY and XZ, it is because there is an MVD X →→ Y or X →→ Z that violates 4NF.
 - Again, we can reconstruct XYZ from its projections onto XY and XZ.

Bag Semantics

- · A relation (in SQL, at least) is really a bag.
- It may contain the same tuple more than once, although there is no specified order (unlike a list).
- Example: {1,2,1,3} is a bag and not a set.
- Select, project, and join work for bags as well as sets.
 - Just work on a tuple-by-tuple basis, and don't eliminate duplicates.

Bag Operations

- Union: sum the times an element appears in the two bags.
- Example: $\{1,2,1\} \cup \{1,2,3,3\} = \{1,1,1,2,2,3,3\}.$
- Intersection: take the minimum of the number of occurrences in each bag.
- Example: $\{1,2,1\} \cap \{1,2,3,3\} = \{1,2\}$
- Difference: subtract the number of occurrences in the two bags.
- Example: $\{1,2,1\} \{1,2,3,3\} = \{1\}$.

Different Laws for Bags

- Some familiar laws continue to hold for bags.
 - Examples: union and intersection are still commutative and associative.
- But other laws that hold for sets do not hold for bags!

Example

- $R \cap (S \cup T) \equiv (R \cap S) \cup (R \cap T)$ holds for sets but not for bags!
- Let R, S, and T each be the bag {1}.
- Left side: $S \cup T = \{1,1\}; R \cap (S \cup T) = \{1\}.$
- Right side: $R \cap S = R \cap T = \{1\}$; $(R \cap S) \cup (R \cap T) = \{1\} \cup \{1\} = \{1,1\} \neq \{1\}.$

Extended Relational Algebra

- Adds features needed for SQL, bags.
- Duplicate-elimination operator δ .
- Extended projection.
- Sorting operator τ .

Duplicate Elimination

• $\delta(R)$ = relation with one copy of each tuple that appears one or more times in R.

Beers

beer	price
Amstel	4
Guinness	6
Guinness	7
Guinness	7
Bud	5

δ(Beers)

beer	price
Amstel	4
Guinness	6
Guinness	7
Bud	5

Sorting

- $\tau_I(R)$ = list of tuples of R, ordered according to attributes on list L.
- Note that result type is outside the normal types (set or bag) for relational algebra.
 - Consequence: τ cannot be followed by other relational operators.

Extended Projection

· Allow the columns in the projection to be functions of one or more columns in the argument relation.

Beers

beer	cost	price
Amstel	2	4
Guinness	4	6
Guinness	4	7
Guinness	4	8
Bud	1	5

 π price,price,price-cost(Beers)

pri	ice1	price2	price-cost
4		4	2
6		6	2
7		7	3
8		8	4
5		5	4

Sad Drinkers Example

 Find all drinkers that only frequent bars that do not sell their favorite beer.

Sells(bar, beer, price) Bars(name, addr) Frequents(drinker, bar) Drinker(name, addr, favBeer)