CS 235: Introduction to Databases

Svetlozar Nestorov

Lecture Notes #7

Outline

- · So far, we studied schema design.
- How to manipulate data?
- · Relational algebra
 - Elegant theoretical framework
 - Not so elegant in practice SQL
- · Relational operators

Core Relational Algebra

- A small set of operators that allows us to manipulate relations in limited but useful ways.
 - 1. Union, intersection, and difference: the usual set operators.
 - · Relation schemas must be the same.
 - 2. Selection: Pick certain rows from a relation.
 - 3. Projection: Pick certain columns.
 - 4. Products and joins: Combine relations in useful
 - 5. Renaming of relations and their attributes.

Selection

- $R_1 = \sigma_C(R_2)$
 - where C is a condition involving the attributes of relation R₂.
- · Example:

Relation Sells:

bar	beer	price
Spoon	Amstel	4
Spoon	Guinness	7
Whiskey	Guinness	7
Whiskey	Bud	5

 $SpoonMenu = \sigma_{bar=Spoon}(Sells)$

·		
bar	beer	price
Spoon	Amstel	4
Spoon	Guinness	7

Projection

- $R_1 = \pi_L(R_2)$
 - where L is a list of attributes from the schema of R_2 .
- Example

 $\pi_{\text{beer,price}}(Sells)$

beer	price
Amstel	4
Guinness	7
Bud	5

· Notice elimination of duplicate tuples.

Product

- $R = R_1 \times R_2$
 - pairs each tuple t_1 of R_1 with each tuple t_2 of R_2 and puts in R a tuple t_1t_2 .
- Theta-Join: $R = R_1 \bowtie R_2$
 - is equivalent to $R = \sigma_{\rm C}(R_1 \times R_2)$.

Example

Sells = [

bar	beer	price	4
Spoon	Amstel	4	Г
Spoon	Guinness	7	3
Whiskey	Guinness	7	١ħ
Whiskey	Bud	5	-

Bars =

addr
Wells
Rush

BarInfo = Sells Sells.bar=Bars.name Bars

bar	beer	price	name	addr
Spoon	Amstel	4	Spoon	Wells
Spoon	Guinness	7	Spoon	Wells
Whiskey	Guinness	7	Whiskey	Rush
Whiskey	Bud	5	Whiskey	Rush

Natural Join

- $R = R_1 \bowtie R_2$
 - Equivalent to:
 - 1. theta-join of R_1 and R_2 with the condition that all attributes of the same name be equated.
 - one column for each pair of equated attributes is projected out.
- · What is the formula?
- Example:
 - Suppose the attribute name in relation Bars was changed to bar, to match the bar name in Sells.
 - BarInfo = Sells ⋈Bars

Natural Join Example

• BarInfo = Sells ⋈Bars

bar	beer	price	addr
Spoon	Amstel	4	Wells
Spoon	Guinness	7	Wells
Whiskey	Guinness	7	Rush
Whiskey	Bud	5	Rush

Renaming

- $\rho_{S(A_1,...,A_n)}(R)$ produces a relation identical to R but named S and with attributes, in order, named $A_1,...,A_n$.
- Example:

$$\rho_{R(bar,addr)}$$
 (Bars) =

bar	addr
Spoon	Wells
Whiskey	Rush

• The name of the second relation is R.

Combining Operations

- · Any algebra is defined as:
 - basis arguments
 - ways of constructing expressions
- For relational algebra:
 - Arguments = variables standing for relations + finite, constant relations.
 - Expressions constructed by applying one of the operators + parentheses.
- Query = expression of relational algebra.

Operator Precedence

- The normal way to group operators is:
 - 1. Unary operators σ , π , and ρ have highest precedence.
 - 2. Next highest are the *multiplicative* operators, \bowtie , \triangleright , and \times .
- 3. Lowest are the additive operators, ∪, ∩, and —.
- But there is no universal agreement, so we always put parentheses around the argument of a unary operator, and it is a good idea to group all binary operators with parentheses enclosing their arguments.
- Example:

Group $R \cup \sigma S \bowtie T$ as $R \cup (\sigma(S) \bowtie T)$.

Expressions and Schemas

- If ∪, ∩, applied, schemas are the same, so the result has the same schema.
- · Projection: use the attributes listed in the projection.
- · Selection: no change in schema.
- Product R × S: use attributes of R and S.
 - But if they share an attribute A, prefix it with the relation name, as R.A, S.A.
- Theta-join: same as product.
- Natural join: use attributes from each relation; common attributes are merged anyway.
- · Renaming: whatever it says.

Example 1

 Find the bars that are either on Wells Street or sell Bud for less than \$6.

Sells(bar, beer, price)
Bars(name, addr)

Example 2

• Find the bars that sell two different beers at the same price.

Sells(bar, beer, price)

Linear Notation for Expressions

- Invent new names for intermediate relations, and assign them values that are algebraic expressions.
- Renaming of attributes implicit in schema of new relation.

Example

• Find the bars that are either on Wells Street or sell Bud for less than \$6.

Sells(bar, beer, price)
Bars(name, addr)

 $\textit{R1(name)} \ := \ \pi_{\text{name}}(\sigma_{\text{ addr = Wells}}(\textit{Bars}))$

 $\textit{R2(name)} \hspace{0.2cm} := \hspace{0.2cm} \pi_{\text{bar}}(\sigma_{\text{ beer=Bud AND price} < 6}(\textit{Sells}))$

 $R3(name) := R1 \cup R2$