CS 235: Introduction to Databases

Svetlozar Nestorov

Lecture Notes #3

Overview

- Weak entity sets and keys
- Design principles
- Examples

CS 235: Intro to DB: S. Nestorov

Nactorov

Weak Entity Sets

- Sometimes an E.S. E's key comes not (completely) from its own attributes, but from the keys of one or more E.S.'s to which E is linked by a supporting many-one relationship.
- Called a weak E.S.
- Represented by putting double rectangle around E and a double diamond around each supporting relationship.
- Many-one-ness of supporting relationship (includes 1-1) essential.
 - With many-many, we wouldn't know which entity provided the key value.

CS 235: Intro to DB; S. Nestorov

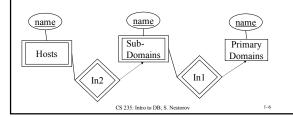
Example: Email Addresses

- Email address = user name + host name, e.g., evtimov @ cs.uchicago.edu.
- Email address corresponds to a user name on a particular host.
- Once on a host, you only need user name, e.g., evtimov
- Key for an email = the user name at the host (which is unique for that host only) + the IP address of the host (which is unique globally).

CS 235: Intro to DB; S. Nestorov

1-4

Email Addresses


 Design issue: Under what circumstances could we simply make user-name and hostname be attributes of email, and dispense with the weak E.S.?

CS 235: Intro to DB; S. Nestorov

1-5

Example: Chain of Weakness

 Consider IP addresses consisting of a primary domain (e.g., edu), subdomain (e.g., uchicago), and host (e.g., cs).

1

Chain of Keys

- Key for primary domain = its name.
- Key for sub-domain = its name + name of primary domain.
- Key for host = its name + key of sub-domain = its name + name of sub-domain + name of primary domain.

CS 235: Intro to DB; S. Nestorov

All Connecting Entity Sets Are Weak BBP The-Bar The-Beer Beers Prices Beers Rame Addr Drice CS 235: Intro to DB; S. Nestorov

All Connecting Entity Sets Are Weak

- In this special case, where bar and beer determine a price, we can omit price from the key, and remove the double diamond from ThePrice.
- Better: price is an attribute of BBP.

CS 235: Intro to DB; S. Nestorov

1-9

Constraints

- Part of the schema
- Keys
- Single value constraints
- Referential integrity constraints
- Domain constraints
- General constraints

CS 235: Intro to DB; S. Nestorov

Single Value Constraints

- Each attribute has a single atomic value
 - · No set attributes!
- Many-one, one-one relationships

CS 235: Intro to DB; S. Nestorov

1-11

Referential Integrity

- Exactly one value
 - Compare with at most one for single-value constraints.

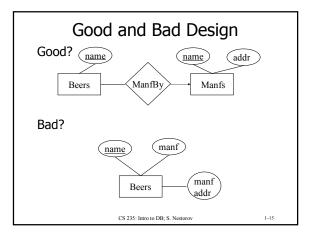
CS 235: Intro to DB; S. Nestorov

1-12

Design Principles

- Setting: client has (possibly vague) idea of what he/she wants. You must design a database that represents these thoughts and only these thoughts.
- Avoid redundancy.
 - Wastes space and encourages inconsistency.
 - Intuition: something is redundant if it could be hidden from view, and you could still figure out what it is from the other data.
- Avoid intermediate concepts.

CS 235: Intro to DB; S. Nestorov


1_13

Design Principles

- Faithfulness to requirements.
 - Remember the design schema should enforce as many constraints as possible. Don't rely on future data to follow assumptions.
 - Example: If registrar wants to associate only one instructor with a course, don't allow sets of instructors and count on departments to enter only one instructor per course.


CS 235: Intro to DB; S. Nestorov

1 14

Good and Bad Design

Bad?

• Question: Why is it OK to have Beers with just its key as attribute? Why not make set of beers an attribute of manufacturers?

CS 235: Intro to DB; S. Nestorov

1-16

Exercise Problem 2

■ E/R diagrams

CS 235: Intro to DB; S. Nestorov

Exercise Problem 3

Multiway relationships

CS 235: Intro to DB; S. Nestorov

1-18