
Lecture 1:
“a small yet powerful operating system”

Unix History and Fundamentals

Introduction
• “Technically, Unix is a simple, coherent system which

pushes a few good ideas to the limit.”—Sunil Das
• “The greatest virtues of Unix, in my opinion, are those that

emerged as a result of the way that it developed.”—Peter
Salus

• “The growth and development of Unix is an exciting
sociological tale. . . . The nature of the individuals and
their interactions is what made Unix vital.”—Peter Salus

• “UNIX is simple and coherent, but it takes a genius (or at
any rate, a programmer) to understand and appreciate its
simplicity.”—Dennis Ritchie

• The history of Unix is a story of intrigue, adaptability,
desire, cunning, intellectual honesty, and the pursuit of
freedom and happiness.—Mark Shacklette

“it was the summer of ‘69”
• The Multics (Multiplexed Information and Computing Service)

operating system was being developed jointly by the Computer
Research Group at BTL and Fernando Corbato’s MAC (Multiple
Access Computers) project at MIT and GE which provided the
hardware. Multics:
– Was based on CTSS (Compatible Time Sharing System) at MIT
– Was to deliver multi-user multitasking support for 300

simultaneous users in an interactive (non-batch) system
– Ran on a powerful machine: a GE 645, a 36-bit machine that

executed at about .435 MIPS
• This was about 30% faster than the original IBM PC

(808[6,8]), and a 1000 Mhz Pentium III today is about 2000
times faster than the GE 645

• The GE645 took about an hour to boot Multics

Space Travel and New Ideas
• Ken Thompson (Berkeley EE) was at this time:

– designing a file system to support Multics,
– playing his “Space Travel” game

• Multics had a few new ideas:
– Virtual Memory for each user
– Shared runtime libraries
– Notion of making the “user interface” (shell) a user

program instead of part of the kernel
– First Hierarchical file system (novel concept in 1964)
– Write the OS in a portable high level language: PL/1

• According to one tongue-in-cheek oral tradition, Multics
was also an acronym for “Many Unnecessarily Large
Tables In Core Simultaneously”

The Multics Triumvirate
• After tuning, a Multics machine could support up to 30

users per processor, but performance was somewhat erratic
• In addition, Space Travel’s performance on the GE645 was

less than stellar, and it cost Thompson’s department $50-
$75/hour to play (timesharing in 1969 remember!).

• But the triumvirate had different ambitions for Multics:
– GE wanted Multics as an operating system on which to

sell GE computers
– MIT wanted Multics to advance the state of the art in

operating systems research
– BTL just wanted a good computer on which to get

some work done
• But BTL management felt it was costing more than it came

to

“the toy was gone”
• In the end, BTL decide to pull out of the Multics effort in

the spring of 1969.
• Multics development did continue under the auspices of

Honeywell (which had purchased GE’s computer group),
but Corbato and MIT pulled out of the effort finally in the
mid 1970’s.

• The last Multics machine was shut down in October of
2000 (at the Canadian Department of National Defense)

• Meanwhile, back at BTL, Ken and his group responded by
petitioning the management at BTL to purchase a new
DEC 10 for about $120,000. Why? The were asked. So
they could work on another operating system that looked a
lot like Multics….

What Part of “No” Don’t You
Understand?

• Their repeated requests were denied.
• Ken Thompson’s wife took their new baby out to California to see

his parents, and so he had a month “free”.
• Ken and Dennis Ritchie (Harvard math) borrowed a DEC PDP7 from

another group (that had already paid $72,000 for it), and Thompson
used that month to write a new operating system, a shell, an editor,
and an assembler.

• He based the hierarchical file system on the Multics design,
implementing it overnight

• In one man-month, a new, albeit rudimentary, multiprocessing, multi-
user operating system was written

• As a play on words, Peter Neumann (or Brian Kernighan?) called the
new system “UNICS”, for UNIplexed Information and Computing
Service, as a pun on the somewhat hubristic ambitions of Multics.

Small is Beautiful
• But the 18-bit PDP 7 was a much smaller and slower

machine than the GE 645, it had only 8K of user memory
and would only support 2 simultaneous users (physical
limit).

• This introduced a necessity to think small, and drove a
fundamental tendency to write a number of very small
utilities that followed the philosophy of “do one thing, and
do it well”.

• Dennis Ritchie had ported “B”, a shortened BCPL (Basic
Compiled Programming Language) over to UNICS, which
was too small to support a large high level language
compiler such as FORTRAN or PL/1. In fact, “B” ran as
purely an interpreter generating intermediate code.

• Thompson ported over Space Travel onto the PDP 7.

The “Setup”
• The Small is Beautiful philosophy was driven by necessity,

and can even be seen in the cryptic and abbreviated names
for the various programs: cp (copy), rm (remove), ls (list),
cat (catenate), dc (desk calculator), ttt (tic tac toe, a game,
Belle in 1980) and ed (line editor). (Many names, like ‘ls’
and ‘pwd’ were literally inherited directly from Multics)

• Remember also that early “monitors” were 30
character/second teletype devices, and each character
transmitted could take some time.

• Ritchie, McIlroy, and Ossanna needed a new computer but
had no money (and Thompson needed a better platform for
Space Travel)

• Luckily, the Patent Department at BTL had some money
and needed a new text processing application

The Sting I
• In the summer of 1970, Joe Ossanna suggested they

commit to delivering this new text processing system
similar to “runoff” for the old CTSS system)

• This would give them the excuse to argue for a new
computer (not for a new operating system, but for the
patent office’s new text processing system)

• So they got their hot new computer, a 16-bit PDP 11/20
with a whopping 64K of memory (extensible to 256K) and
a .5 Megabyte disk for a cost of about $65,000

• But the new machine for the text processing system needed
a new operating system, and so they quietly ported UNIX
over onto it

• Ritchie and Morris “borrowed” some old code from
another system that did text processing, and hacked
together a text processing system literally overnight.

The Sting II
• So, after Multics, they couldn’t get anyone to buy them a

decent computer to write an operating system, but they got
instead a great system on which to write a text processing
system, which they called “roff”, after “runoff”.

• Unix was back in business, and had delivered its first
system, a text processing system, to the Patent Department
at BTL.

• AT&T UNIX Version 1.0 was officially released on
11/3/1971 (read the last sentence of the Programmer’s
Manual)

• Soon, the Patent Department income provided them a new
PDP 11/45 with 256K of memory for further development.

AT&T Unix - First Edition 11/3/71

• Contained around 60 user commands, including chmod,
chown, chdir, cmp, date, cp, db, df, du, ld, ln, mv, od, pr,
roff, to name a few.

• This constituted the core of Unix, only the concept of
“pipes” was missing.

• Edition 2 came out shortly after in June of 1972, and its
preface mentioned 10 users of Unix.

• Interest quickly spread through universities, and the list
of 16 users for version 3 reads like a university who’s
who: Harvard, Berkeley, Columbia, Princeton, Stanford,
Johns Hopkins. (Not MIT, why?)

• So what would any red-blooded capitalist American
company do with such a promising product?

Here Come da Judge
• But there was a slight problem….

– 1956 Antitrust decision (from Truman’s original 1949
suit) specifically prohibiting AT&T and Western
Electric from profiting from anything that didn’t
directly have to do directly with providing telephone
service

– Did Unix provide Telephone service? No.
– Could AT&T therefore sell and profit from Unix? No.

• So AT&T decided to license the software and it’s entire
source code to educational institutions for a nominal fee, to
cover packaging, and released it w/o support to any
interested universities

Edition 3, 2/73
• Edition 3 introduced the C Programming Language, in

February of 1973, and the concept of pipes.
– A pipe in Unix is simply a way to connect the output of

one program and use it automatically as the input to
another program.

– Thompson rewrote a number of utilities (again, pulling
an all-nighter) to accept input directed to it from
another program. Such programs were called a filters.

– Another driving force in the creation of pipes and filters
was that writing a single large monolithic program
probably wouldn’t have fit in a 64K process space
anyway!

Edition 4, 1973
• C was derived from B which was derived from

BCPL, which was derived from FORTRAN.
• Both BCPL and B (and therefore C) contained the

notion of pointer indirection
• By the fall of 1973 Unix could support up to 33

simultaneous users issuing over 13,000 commands
a day, and was in use by dozens of institutions.

• AT&T Bell Labs had an accidental hit on their
hands.

• In November of 1973, the fourth edition (System
Four) was released, and Unix itself was rewritten
entirely in C, thus making the operating system
highly portable to new machine hardware.

Bill Joy and The Berkeley
Connection

• In 1975, Ken Thompson was invited to Berkeley to teach
an operating systems course. He taught a course on …
Unix.

• While at Berkeley, he ported Unix Version 6 onto the
Berkeley CS department’s new PDP 11/70, which
provided a 32 bit system with up to 4Meg of memory
addressing

• In 1979 Bell Labs also ported Unix Version 7 over onto a
VAX (Virtual Addressing Extension), which supported a
512 Meg maximum memory and virtual memory

• Berkeley took AT&T’s VAX port and put it on a brand
new VAX 11/780, which had 2 Meg of memory installed.

• Bill Joy brought to Unix the vi editor, termcap, the C shell
and command history, job control, and most importantly,
the Berkeley Software Distribution (BSD) version of Unix.

The Network

• The ARPANET project of the DoD’s Advanced Research
Projects Agency was begun in 1969, the same year Ken
Thompson was playing Space Travel.

• ARPANET was designed to have an intelligently
reconfigurable network that could survive multiple nodes
being “taken out” simultaneously. It was a Cold War
network.

• Bill Joy helped convince DARPA that Unix, not VMS,
should be the OS of choice, because it was portable and
wouldn’t be tied to a particular hardware platform.

• Thus Unix was chosen as the core operating system by
DARPA running on the VAX, in preference to it’s native,
default OS (VMS)

Berkeley Software Distribution

• Bill Joy founded the Berkely Software Distrubtion while
working for the Computer Systems Research Group
(CSRG) at Berkeley

• BSD 1.0 was released in early 1978 for a license payment
of $50.00 for the PDP 11/70.

• BSD Version 3 was released in 1979 and ran on the VAX
11/780 (based on AT&T Version 7 for the VAX)

• BSD Version 4.1a in late 1981 introduced Berkeley
Sockets and Version 4.2, in September 1983, introduced
networking to Unix in the form of TCP/IP stacks.

• BSD 4.3, June 1990, introduced Network File System
(NFS).

BABEL:
The Commercialization of Unix

• In 1982, the Justice Department concluded its long
dispute with AT&T by dissolving Western Electric and
breaking up AT&T into independent phone-specific
companies (Baby Bells), which allowed AT&T to enter
the computer business—like sell software

• This meant several things:
– AT&T could now profit from UNIX
– UNIX was now protected intellectual property, thus

John Lion’s famous commentary on Version 6
because a copyright infringement and its distribution
as photocopies had to go “underground”

– UNIX now cost real money, rising as high as
$200,000

BABEL:
The Commercialization of Unix

• In 1982, Bill Joy left Berkeley to form SUN
Microsystems

• Other heavy-hitters entered the Unix market: IBM,
Hewlett-Packard, Digital, Silicon Graphics, etc.

• Unix and its software went through the roof in terms of
price

• As a result, free open-source movements began, most
notably with Richard Stallman and the Free Software
Foundation’s GNU project

• Each vendor had its “flavor” of Unix. Efforts, such as
POSIX (Portable Operating Systems Based on Unix)
were developed to enforce some conformity among the
various competing versions

PDP 7

1969

1971

Version 1 PDP 11/20

Version 4 (rewritten in C)

1973

Version 6

1975

BSD Version 1 PDP 11
Version 7

1977-
1978

Microsoft SCO Xenix

1979

1983
System V (after Baby Bell Splitup)

BSD Version 4.2

1988

BSD Version 4.3
System VR4

Unix Core Philosophy Summary I
• Each program should do one thing and do it well.

If you need something new, add a new simple
program rather than bloat existing programs with
new features.

• Allow the output of every program to be the input
to another independent program. Don't clutter
output with extraneous information. Avoid
columnar and binary formats for I/O. Don't insist
on interactive input.

• Design and build software, even operating
systems, to be tested early on in the development
cycle. Throw away the clumsy parts and rewrite
them.

Unix Core Philosophy Summary II
• Favor general-purpose software tools, even if you have to

take the time to stop and write the tools yourself.
• Honesty: Admit your bugs, even advertise them so that

others won’t trip over them
• Do not assume, a priori, that your users are idiots
• When forced to decide between portability and speed,

always opt for portability (speed will come, Grasshopper)
• Give users choice (as in shell, editor, etc.)
• Provide online help (from Multics)
• Provide source code for freedom and empowerment
(cf. McIlroy, Pinson, Tague, "Unix Time-Sharing System Forward", The Bell System Technical Jounal, July -Aug 1978;

57.6.2, p. 1902)

The Unix File System

• Unix is Pro-Family (Hierarchical)
– Parent, child, current directories

• Absolute pathnames (start at root)
• Relative pathnames (start where you are)
• Important standard directories:

– / /home /usr /usr/bin
– /sbin /usr/sbin /etc /var
– /dev /tmp /usr/ucb

The Home Directory

• Your home directory is defined in /etc/passwd
• You can use any of the following commands to get home:

– cd
– cd ~
– cd $HOME
– cd /full/path/to/your/home/dir

• Change to the previous (last) directory:
– cd -

Man Pages
• Man man
• Sections:

– user
– system calls
– C library functions/X Windows functions
– devices and network interfaces
– file formats
– games and demos
– environments/miscellaneous
– system administration/maintenance

• whatis keyword
• man [1,2] write (1 is user command, 2 is system call)
• man -k keyword (or apropos keyword)

“Everything in Unix is a File”
• A file has a name and an associated inode, which contains

detailed information about the file
• What is a directory?

– A file containing a list of other files, some of which
may be other directories

– A file whose contents is a list of name + inode pairs
• The directory structure is an abstraction that presents

files on a file system in a hierarchical manner—but the
files’ contents remain littered across the physical file
system.

• A file is a stream of bytes
• A file is referenced by a user via a filename. A filename

can be up to 255 bytes.
• A file is referenced by the system via the inode

inode details
• Every file is associated with a potentially unique inode. In fact, early

Unix systems refered to filenames as “links”, that is, names “linked” to
an inode.

• The inode contains information about the file and the inode itself, like:
– File type (regular, link, directory, etc.)
– Number of Hard Links to the inode
– Associated file byte stream length in bytes
– Device ID where the file is located (/dev/hda1)
– Inode number of this file
– File owner’s userid and groupid
– mtime, atime, and ctime
– permissions (rwx)

• ls -i (ls -1iF)
• The stat command

File Permissions

• Files have three categories of permissions:
– user (owner)
– group
– other (everyone else NOT in one of the above)

• r (4): Read permission (can open the file)
• w(2): Write permission (can modify it)
• x (1): Execute permission (can run it)

Directory Permissions
• Directories have three categories of permissions:

– user (owner)
– group
– other (everyone else NOT in one of the above)

• r (4): Read permission (can ls the filenames)
• w(2): Write permission (can modify the dir)
• x (1): Execute permission (can cd into dir)
• t (sticky bit): individual ownership only

Links
• Hard Links

– ln origfile linkfile
– a directory entry with a unique name referencing a particular inode
– ls -i will list out inodes for files (ls -1iF)
– Only superuser can hard link to a directory
– Hard links are only meaningful within a single filesystem, not

across mount points
– A hard link’s inode is the same number as the linked file’s inode

• Soft (Symbolic) Links:
– ln -s origfile linkfile
– Anyone can create a soft link to a directory
– A softlink can refer to another file on another filesystem
– ls -[l]F will reveal softlinks (noted by -> pointer and @ notation)
– A softlink’s contents is the name of the file pointed to.

Redirection
• Unix has three default file handles (defined in

/usr/include/unistd.h):
– Standard Output (stdio, 1)
– Standard Error (stderr, 2)
– Standard Input (stdin, 0)

• By default, standard output is sent to the current process
owner’s terminal

• Redirection causes the standard output of the current
process to go to some other designated file:
– ls -la >/tmp/some.other.file
– cat /tmp/some.other.file

Here Documents (part un)
• A Here Document allows you to enter a full command that will be

executed at some later time (soon, Ralph, very soon)

cat <<-EOF
> this is line one
> this is line two
> this is line three
EOF

nl .bashrc

nl <<-EOF
> this is line one
> this is line two
> this is line three
EOF

Here Documents (part deux)
• I want to contact ftp.oreilly.com, cd to the

/pub/examples/nutshell/sys.prog directory, and get the file
examples.tar.gz, all in one command.

ftp -n ftp.oreilly.com <<-EOF
passive
user anonymous mark@cs.uchicago.edu
binary
hash
cd /pub/examples/nutshell/sys.prog
dir
get examples.tar.gz
quit
EOF
ls -l examples.tar.gz

Here Documents (part trois)
• I want to change all the include lines in a bunch of C source files, and change

“#include </wrong/stdio.h>” to “#include <stdio.h>”, all in one command
(only works with bash version 2.0 or greater).

let “x=0”
> while ((x < 10))
> do
> cp orig.c “file${x}.c”
> let “x=x+1”
> done

for file in *.c
> do
> ed $file <<-EOF
> g/\/wrong\//s///
> w
> q
> EOF
> done

• Help on ed editor is at http://www.bath.ac.uk/bucs/Docs/ub-4-1.html

Shell Quoting (Maskierungen)

• \ protects the next character from the
shell’s interpretation except the newline
character

• “” protects everything from the shell’s
interpretation except double quotes,
backslashes, dollar signs, and backquotes

• ‘’ protects everything from the shell’s
interpretation except single quotes

Shell Variables

• foo=“hello world”
• echo $foo
• echo “$foo”
• echo “\$foo”
• echo ‘$foo’
• echo ‘\$foo’

Job Control

• & puts current process in background
• jobs prints out current jobs in shell
• kill %n terminates a given job
• fg [%n] moves a job to the foreground
• bg [%n] moves a job to the background

Filters
• Filters are programs that are written to accept input from STDIN in

addition to any other forms of input.
• Filters send output to STDOUT.
• The list of Unix Filters includes:

– cat
– cut
– less
– grep
– sort
– tr
– uniq
– wc
– tail, head
– lpr

cat and sort
cd ~mark/pub/51081

cat sort.txt
sort +1 -2 sort.txt (sorts by last name)

• sort numerically
sort +2 -3 sort.txt (sort by year of inauguration)
sort +3 -4 sort.txt (won't work)
sort +3 -4 -n sort.txt (specify numeric sort)

• sort passwd file by userid
sort -t: -n +2 -3 passwd2

• practice more on sort3.txt
sort sort3.txt
sort -n +1 -2 sort3.txt

sort as a Filter
• Sort the password file by userid numerically

cat passwd2 | sort -t: -n +2 -3
• list files by decreasing numbers of lines per file

wc -l * 2>/dev/null |sort -rn
• now, get rid of total line:

wc -l * 2>/dev/null | sort -rn | tail +2
• other examples:

ls -la | sort -n +4 -5
ls -la | sort -n -k5

uniq Filter
• uniq (cd to ~mark/pub/51081 subdirectory)

uniq uniq.txt (does nothing: uniq only works on adjacent lines)
• how can we get adjacent lines?

sort uniq.txt
sort uniq.txt | uniq
sort -u uniq.txt

• how many duplicates (-c = count)?
sort uniq.txt | uniq -c

• Print just list the duplicated lines, once (lists only lines duplicated=2 or
more appearances)

sort uniq.txt | uniq -d

• List NON-duplicated lines (lines appearing only once = singletons)

sort uniq.txt |uniq -u

cut Filter
• cut (filters text from files - cuts columns and fields)

– column cutting -c

• who | cut -c10-17

• who | cut -c19-31
• who | cut -c32-

– tail passwd2

– field cutting -f

• cut -d: -f1,5 passwd2 | tail

• cat passwd2 | cut -d: -f1,5 | tail

• cat passwd2 | cut -d: -f1,5-6 | tail
• cat passwd2 | cut -d: -f1,5-6 | grep mooney

	Lecture 1:¡°a small yet powerful operating system¡±
	Introduction
	¡°it was the summer of ¡®69¡±
	Space Travel and New Ideas
	The Multics Triumvirate
	¡°the toy was gone¡±
	What Part of ¡°No¡± Don¡¯t You Understand?
	Small is Beautiful
	The ¡°Setup¡±
	The Sting I
	The Sting II
	AT&T Unix - First Edition 11/3/71
	Here Come da Judge
	Edition 3, 2/73
	Edition 4, 1973
	Bill Joy and The Berkeley Connection
	The Network
	Berkeley Software Distribution
	BABEL: The Commercialization of Unix
	BABEL: The Commercialization of Unix
	Unix Core Philosophy Summary I
	Unix Core Philosophy Summary II
	The Unix File System
	The Home Directory
	Man Pages
	¡°Everything in Unix is a File¡±
	inode details
	File Permissions
	Directory Permissions
	Links
	Redirection
	Here Documents (part un)
	Here Documents (part deux)
	Here Documents (part trois)
	Shell Quoting (Maskierungen)
	Shell Variables
	Job Control
	Filters
	cat and sort
	sort as a Filter
	uniq Filter
	cut Filter

