
3 ..-.

Control Flow Analysis: a Functional Languages Compilation Paradigm

Manuel Serrano

INRIA-Rocquencourt

Abstract

Control flow analysis (cfa) is now well known but is not
widely used in real compilers since optimizations that can
be achieved via cfa are not so clear. This paper aims at
showing that control flow analysis is very valuable in prac-
tice by presenting a fundamental optimization based on cfa:
the closure representation algorithm, the essential optimiz-
ing phase of a X-language compiler. Since naive and regular
schemes to represent functions as heap allocated structures
is far too inefficient, the main effort of modern functional
languages compilers is devoted to minimize the amount of
memory allocated for functions. In particular, compilers try
to discover when a procedure can safely be handled without
any allocation at all. Previously described methods to do
so are ad hoc, depending on the language compiled, and not
very precise. Using cfa, we present a general approach which
produces better results. This refined closure analysis sub-
sumes previously known ones and optimizes more than 90 %
of closure on the average.
This optimization is fully integrated into the Bigloo com-
piler, so that we can report reliable measures obtained for
real world programs. Time figures show that analyses based
on cfa can be very efficient: when the compiler uses the im-
proved closure allocation scheme the resulting executable pro-
grams run more than two time faster.
KEYWORDS: Scheme, ML, compilation, closure analysis, control
flOW CZdy8i8.

Introduction

For several years, control flow analysis (the determination
of the call graph in the presence of functions as first-class
values) has been studied in the literature about functional
language compilation. Several theoretical models have been
set up, and several algorithms have been suggested. Since
these algorithms are complex, the attention has been focused
on their design. But some crucial, although pragmatic, ques-
tions remain. Are these algorithms really useful in pratice ?
What can they really improve ? This paper gives an impor-
tant optimization for which cfa proves to be interesting: the
reduction of closures allocation. Control flow analysis com-
putes approximations of functional operators. These approx-
imations are the basis of our closure allocation scheme. This
optimizing closure analysis has a sound theoretical basis and
subsumes previously known ones. This analysis optimizes
more than 90 % of closures on the average.
The optimization described in this paper is fully inte-
grated into the Bigloo Scheme compiler (Available by any-

“Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commerical advantage, the ACM wpyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.”

mous ftp from ftp.inria.fr [192.93.2.54], in the directory
/INRIA/Projects/icsla/Implementations [8]). We can
therefore report reliable measures of its effectiveness. Our
figures show that closure optimization leads to executable
programs running 70 % faster (see section 3).
The paper is organized as follows : section 1 presents the
control flow analysis. Section 2 details the closure analysis.
Section 3 gives benchmark figures and demonstrates the ben-
efit of the analysis.

1 The control flow analysis

Control flow of modern functional language such as Scheme
and ML, where functions are first-class citizens, m’ay, by na-
ture, be strongly dynamic. Nevertheless, static parts of the
control can be revealed by control flow analysis.
The analysis we have made in Bigloo is close to the “Ocfa”
(Oth-order Control Flow Analysis) described by 0. Shivers
in hi Ph. D. thesis [lo]. First, for each functional call in
a program it statically computes an approximation of the
set of functions that can be invoked in any execution. The
approximations are sometimes too rough (for example, they
contain too many elements to be relevant); but they are safe.
Since the language we compile is the full Scheme language,
we have been obliged to adapt Shivers’ algorithm to deal with
addtional constructs he did not consider. In addition, other
data types approximations are computed.
Shivers has given a rigorous formalism to express a class of
control flow analysis. On this basis, our work has focused on
the utilizations of this analysis in real situations. For this
reason, we shall just present the algorithm without redling
its theoretical basis nor proving its soundness (see Shivers’
thesis).

1.1 The language used

Bigloo does not use continuation passing style (cps) as inter-
mediate language. Therefore, by contrast to previous works,
the language our cfa algorithm works on is not cps; it is
a simplified direct style Scheme which looks like Lisp. Its
grammar can be found below :
Syntactic categories

F” :
Varld (Variables identifier)

E E
px;Id (finctiops identifier)

(Expressions)
n E
r E

Fey Pwrm
(Definition)

c E Seq (Non-empty sequence of expressions)
Concrete syntax

n ::= r...r
r ::= (define (F V.. V) X)

((define V)
E ::= V

) (set! V E)
1 (labels ((F (V v) C) (F (V V) C)) X)
1 (if E E E)
1 (function F)

1 (funcall V E . E)
1 (failure)
1 (FE... E)

D ::= EE... E

The keywords define, set !, and if belong to Scheme and
have their usual meaning. Moreover, we have borrowed from
Common Lip function, funcall and labels. The failure
form allows us to stop the computation; its semantics specifies
that its call continuation will not be invoked. Moreover our
language offers modules in which variables can be imported,
exported or static (local to a module).

Note: The lambda form does not exist, but functional values can
be obtained by composing function and labels. Therefore, what
is usually writtenin Scheme : (lambda (. . .) . . .), must be written
inourlanguage: (labels ((id (...) . ..)) (function id)).

Note: The call/cc function does not appear in OUT language since
it is not a special form but just a library function. This function
does not need special processing.

1..2 The algwithm

We now present the approximation algorithm. In section ??
we use it to approximate types, the reader may refer to this
section to get an intuitive idea of the general approximation
algorithm. The algorithm performs a simple case analysis
of its program argument. It needs informations about the
identifiers appearing in the program to compute approxima-
tions. These informations about variables are described by
five logical properties : a variable class predicate, function or
not function (7UnT), and we define four locality properties:
7092 and ESC for variables bound to functions, and &OC,
QLO for other variables.
Formally, for all the variables appearing in a program :

LXX(u) cs TV is a m variable.
FLCO(v) e w is a global variable.
7072(u) + II is aforeign function defined in another language

(the implementation language, e.g. C or assembler).
&SC(u) e u is an wping function (defined in another module

or exported).

And for all the approximations computed by the algorithm :
P-UN(z) e> c E FunId.

Note: Only global functions can be exported or imported, so they
are the only ones that can satisfy the &SC predicate.
The abstract syntax tree is annotated with subsets of the
following set : R = { T, I } U FunId
Approximations are sets whose elements are types, functions
or two specific values, T denoting the undefinedobject and I
an approximation not yet computed. Every approximation
containing T is undefined. These approximations are ob-
tained using the A function. Initially, all the approximations
have {I} as value. The only operation defined on approxima-
tions, named add-app ! is the extension of an approximation
by a value. It is defined as follows :

V+ E R, u EVarId u FunId, i j y = A(v) then

add-app!(V,I) + A(v) = if z = I then y else {z}U y.

Functions being complex objects, we access their different
slots using the following projections, ibody for their body and
Jformaisi for their ith formal parameter. To get the approx-
imations, we process a fix point iteration (until no new ap-
proximations are added) with the following algorithm :

ocfo-czp(exp) =
case exp of

[var] :

Ocfa-vor(var)
[(set! vsr val)] :

Ocfa-set!(vw, val)
[(labels ((fl (al, . al,,,nl) el) . (f,, .)) exp)] :

Ocfa-ezp(exp)
[(if test then else)] :

Ocfa-ezp(test),
Ocfa-ezp(then) U Ocja-ezp(else)

[(function f)] :
tfl

[(funcall fun al a,)] :
Ocfa-unkmown-app(Ocfa-ezp(fun), . . ., Ocfa-ezp(a,))

[(failure)] :
(II

[(fun a, a,)] :
Ocfa-known-app(fun, . ., Ocfa-ezpp(a,))

Ocfa-var(var) =
cond

COC(var) : A(var)
GLO(var) : { T }

Ocfa-set!(VW, val) =
cond

Ccqvar) :
VD E ocf+czp(val), add-app!(VW, z)

PCO(var) :
set-top!(Ocfa-ezp(val))

Ocfa-unknown-app(A, Al, . . ., A,,) =

U Ocfa-try-app(f, Al, . ., An)

IEA

ocfo-try-app(f, Al, . ., A,) =
cond

FUN(f):
Ocfa-known-app(f, Al, . ., A,)

T=f:
Vi E [l,n], set-top!(Ai), { T }

else :
Ocfa-error()

Ocfa-known-app(\lar, Al, . . ., A,) =
cond

ESC(var) :
set-top!(Ocfa-ezp(varlb,dy)),

Vi E [l,n] set-top.‘(Ai), { T)
Fem(var) :

Ocja-foreign-app(var, Al, . . ., An)
else :

Ocfa-function-body(var, Al, ., A,)
Ocfa-function-body(VW, Al, ., An) =

Vi E [l, n], V+ E Ai add-epp!(~arllov,.fvi 7 z)*
oCf-Zp(Wlbody)

set-top.‘(A)
V a f A, set-one-top!(a)

set-one-top!(a)
cond-

7U~(a)h(70~(a)VesC(a)):
Vi E (1, n], set-top!(a llorm.~,i)

else : add-app!(a, T)

Our algorithm is presented in a simplified way, aa programs
are supposed to be correct and fully alpha-converted. Fur-
thermore, one can see that our algorithm could fall in an infi-
nite loop. This could arise when approximating self-recursive
functions (in the function Ucfa-known-app). Thii is straight-
forwardly avoided by using a stamp technique that prevents
computing several approximations of the same function in the
same iteration. These simplifications do not affect the rest of
the paper.

2 Closures allocation

Scheme is dynamically typed, computed functional calls,
where the function is not a constant syntactically known
or recognized during compilation, must be identified. It is
mandatory to check that the object to be applied is a func-
tion and that its arity is compatible with the number of ar-
guments provided. Furthermore, Scheme has two different
types of functions, fix arity and variable arity; procedures

119

can have two entry points; one for each type of function. As
a consequence, the minimum size of a procedure (without its
environment) is four words. We show in this Section that
using the Ocfa analysis, we can reduce the size of procedures.
Such an optimization depends on the way procedures are
used. For that purpose, we introduce the concept of proce-
dure family. Intuitively, the set FunId of program functions
is partitioned in such a way that ali elements belonging to the
same partition are applied at the same places in the program.

2.1 Procedures family

Let us first give some definitions. Let SITE be the set of
call sites of the program. For each element of SITE, the Ocfa
has computed the functions approximations. That is, for all
s = [(funcall f . . .)] belonging to the set SITE, the Ocfa has
computed A(f).
We introduce the function US& which characterizes the use of
program functions. We recall that A gives, for each call, the
set of functions that can be applied. By contrast, USE gives,
for each function, the set of sites where it can be invoked. Its
definition can be found below :

Vf E FunId, USE(P) =
{s E SITE 1s = [(funcall g . . .)] A f E A(g)}

Let us introduce three properties, 7, X and S.

7 property: A function f satisfies 7 if for all its call sites
[(funcall g . . .)], all the elements belonging to the ap
proximations set of g are functions a.lso satisfying the T
predicate. This predicate ailows to group together func-
tions according to their utilization family. Its definition
is:

Vj E FunId, 7(f) +
+SC(f) A Vs = [(funcall g . . .)] E US&(f)

Va E Ahha # f,J=V(a.) A I(a)

X property: A function satisfies the X predicate if for ev-
ery call site, it is the only function that can be invoked.
The definition of X is :

-ESC(f) A (Vs = [(funcall g . . .)] E USE(f), A(g) = {f})

S property: A function f satisfies the S property if it
does not exist any funcall site where f can be invoked.
The definition of S is :

VIE FunId,S(f) cs GSC(f)r\US&(f)= 0

Note: vj E FunId, S(j) * X(j), X(j) * 7(j)

Deflnition 1 Let s be [(funcall f . . .)I. If there is a function

in d(f) that satisfies the 7 predicate, then d(f) is called a
family of procedures.

Proposition 1 For every f in FunId, if f satisfies the S
predicate, then f does not require any allocation, nor for a
structure carrying the closure, neither for any environment.

If a function f satisfies the S predicate, ail invocations to f
are direct (not computed with the funcall form) and can
only occur in the definition scope of f. Then, each call 1.0 f
can be compiled as a direct branch (if f has free variables,
they are added to the list of the formal arguments) 0

Proposition 2 Functions which are never used as actual ar-
guments nor returned as values satisfy the S predicate.

This proposition is obvious because those functions are al-
ways directly invoked (by contrast to the computed calls) ;
they never appear in any funcall 0

Note: This proposition is very important because most of the
functions are always directly used. Our control analysis can be

here widely applied.

Proposition 3 For every f in Funld, if f satisfies the
X predicate, then f does not require closure structure
allocation.’

Indeed, if a function f satisfies the X predicate then

Vs = [(funcall g . . .)] E USE(f),d(g) = {f}

This means that only f can be invoked. The computed call
can be replaced (using a “lambda lifting" [3] pass if needed)
by a direct call which does not require any allocation. 0

Proposition 4 For each f in FunId, if f satisfies the 7
predicate then f can be allocated in an more eficient way
(i.e. with no tog, no ority, ond with only one entry point
slot).

Thii is true because if a function f satisfies the I predicate,
it means that :

Vs = [(funcall g . . .)] E US&(f),Vo E d(g), a E FunId.
This family is known at compilation time, hence, type cor-
rectness can be statically checked. Furthermore, if functions
with variable arity are forbidden to satisfy the 7 predicate,
then one entry point is enough. 0

2.2 Compilation improvements

We show in this section how the Bigloo compiler uses
these three predicates. Four constructs can be improved:
(function, funcall, labels and the global definition). Here
are the improvements for each of them.

(labels (cf...)...)...I or (define (f...)...) : If
f satisfies the S predicate, then no closure is built for
it. Function calls to f will be direct branches.

(function f) :

o Trivial case : if f satisfies the X predicate and if ah
elements of USE(f) are in the lexical scope of f, the
form is removed.

o If f satisfies the X predicate and if f has zero or one
free variable, then no allocation is required, The form
is replaced by the free variable. If f has several free
variables, the form is replaced by the (allocated) list of
the free variables.

o If f satisfies the lr predicate, then neither entry point
for functions with variable arity, nor tag, nor arity slot
have to be allocated ; hence a smaller structure is allo-
cated.

(funcall f . . .) :

0 Let [(funcall f . . .)] be a call site. If there exists an
unique g in d(f) that satisfies the X predicate, then we
compile a direct application.

0 Let [(funcall f . . .)I be a call site. If all elements of
d(f) satisfy the 7 predicate, we compile a computed
application which is Ueasy” that is, with no type check-
ing or arity checking.

‘No allocation is required for the structure representing the closure ;
by contrast, an environment can be allocated.

120

.

l (funcall f . . ,) or (f . . .) : If the result of the applica-
tion is known and if we know that the function invoked
does not have any side effects (this information is ob-
tained by a previous pass), we replace the call by its
result.

2.3 Applications

We study some typical examples to illustrate the improve-
ments described above. Our goal is to provide an intuitive
idea of the optimizations carried out. Section 3 is devoted
to an analysis of the improved performances obtained by the
techniques previously described.

S: First order functions The program :

(lstrec ((fib (lambda (XI)
(if (C x 2) 1 (+ (fib (- x 1)) (fib (- x 2)))))))

(fib 20))

includes no function used aa actual argument or returned
value. Then, the function fib satisfies the S predicate. No
allocation is required to run this program. At runtime, the
fib function will only be a code entry point.
This optimization is very important since like fib, many
functions satisfy the S predicate. The measures of section
3 will prove this.

X: Currying In ML, all functions are unary ; a natural way
to express functions with a higher arity is currying. The
following program illustrates the improvement made when a

function satisfies the X predicate.

(define plus (lambda (x) (lambda (y) (+ x y))))
(define foo (lambda (I. y) ((plus x) y)))

The function (lambda (y) (+ x y)> does, since it is only
applied in the expression ((plus x) y). The nature of its
allocation is changed by replacing it by the list of its free
variables. Here, x is the only free variable. After optimiza-
tion, the code becomes :

(define plus (lambda (x1 x))
(define lambda-l (lambda (env yl (+ env ~111
(define foo (lambda (x y) (lambda-l (plus x) y)))

One can see that, in this case, no further allocation is needed.

7: Denotational semantics Given a denotational seman-
tics, our analysis is able to proves to all closures allocated to
evaluated termes are applied at a same point in a program.
All these closures satisfies the 7 predicates, hence all these
functions form a family. It is possible to obtain a “byte-code”
interpreter by carrying out an optimization of this family of
procedures : rather than allocating closure, one can decide to
give them a unique identifier and to represent them as a pair
< num x enu >. Each calls to one of these procedures would
become an indexed jump to the first projection of these pairs.
These first projections could then be seen as “byte-codes” and
the place in the program function are applied could be seen
as “byte-code” interpreters.

3 Measures

This Section presents the results obtained by measuring code
size, compilation times and execution times with and without
O&-based optimisations. We investigate different programs,
written in different styles by different people. They do not

describe all realistic situations one can face but help to get
an accurate idea of the optimization results obtained.
The performances we give have been obtained using our com-
piler, which generates C code. Three compilations have been
launched for each program : the first one without any op
timization, the second with some optimizations (common
sub-expression elimination) (0)) and finally, one compilation
with all optimizations, including the one presented in this pa-
per (02). For all the compilation modes so far described, we
have evaluated the number of closures allocations. We have
also measured the compilations time. For each time figure,
6 is the ratio 1 - 02/O. Time figures (expressed in seconds)
present the average of several consecutive executions run on
a Sun 4/670 (SS-2 equivalent). For each programs, compil.
is the time in seconds to produce C code; compil.+cc is the
global compilation time (with linking); .o size is the size of
the file obtained after the C compilation (expressed in Kilo
bytes); proc is the number of procedure allocations without
any optimizations. In the 02 column, it represents the num-
ber of closures which are not optimized; 7 is the number of
procedures that have been simplified since they satisfy the
7 predicate; X is the number of procedures eliminated since
they satisfy the X predicate; S is the number of procedures
eliminated since they satisfy the S predicate; run is the ex-
ecution time of the program.
Conform (569 lines, 5 iterations) uses many functions, but
few of them are required to be allocated. The closure opti-
mization has a great impact on this program.

Conform 0 02 6 ’

compil. 6.4 m 6.4 s 60.5 I -845 %
compil.+cc 72.6 8 66.1 * 100.5 8 -52 %
.o size (Kbytes) 144 136 52 61 %
prCM2 1 94 94 1 5 II 95 %
7 I 0
X 16

S 73
, ruu 52.2s 1 43.4s 1 15.8s 1 90%

Enrley (661 lines, 5 iterations) uses vectors and each access
to one of them requires a bound check. These numerous tests
make the syntax tree wery large with many function calls.
This slows down - the Ocfa.

Earley 0 02 6
compil. 5.7 6 5.7 s 11.9 8 -108 %
compil.+cc 21.5 8 21.5 8 21.1 8 2 %
.o size (Kbytes) 120 90 33 63 %
proc 75 1 75 4 95 %
I I 1 0 11 -
X 1 0 11 -
s I 1 71 11 - 1
I-“Il 11 33.7 8) 33.2 s) 7.0 8 11 79 %]

Semantics (231 lines, 5 iterations) being a denotational se-
mantics, the optimization described in Section 2.3 is applied.
This explains why there is so many functions satisfying the
7 predicate in this example.

Semantics I 0 1 02 1 6
compil. 1 4.2 s 4 8 1 13.1 8 -227 %
c0mp11.+cc) 29.8 8 29.4 8 1 23.4 8 20 %
.O size (Kbytes) 1 49 45 1 18 1 60 %
proc 1 54 54] 8 1 85%
2- I I [36 11 _

1

X 1 4 1) -
s I I 8 11 _
run 11 32.5 s 32.6s 1 15.4s 11 53%]

l Since our benchmarks are not usual (the traditional Gabriel
benchmarks do not fit our needs since they are rather small
and they are not higher order), we shortly give the time fig-
ures for another Scheme to C compiler. We chose Bartlett’s

one [l]. The measures have been obtained with the March
15th, 1993 release. All produced executables are unsafe and
use fixnum arithmetic.

act 1 Semantics Conform Earley
compil.+cc (29.9 8 55 8 111.5 8
r”Sl 1 30.6 B 35.4 s 9.7 B

l The Ocfa analysis is rather time consuming and it has a high
complexity in the worst case: (O(n3) where n is the number
of functions and calls). Furthermore it significantly increases
the time spent in the first part of the compilation, although at
an acceptable level. But, paradoxically, sometimes (earley
and semantics) it allows to have a faster global compilation
due to a better generated C code. Since the C compiler runs
more slowly than Bigloo, the time lost in the first passes
is compensated by the time gained in the last ones. This
paradox can be observed for programs where the Ocfa reaches
efficient results. Of course, for the others, the time lost is not
compensated. In practice, for real-sized programs, the Ocfa
analysis is perfectly usable. For example, Bigloo’s bootstrap
(more than 30.000 Scheme lines) takes 45 minutes without
Ocfa and 55 minutes using it.
Moreover, as shown in the benchmark results, the Ocfa seems
to require few iterations to reach the fix point. For our exam-
ples, the maximum number of iterations is only 5. We used
the analysis in the “real world” and we never found programs
that required an polynomial number of iterations.

4 Related works

Three kinds of work are related to ours. First of them, the
studies of control flow.

l Olin Shivers has published numerous papers on control flow
analysis in modern functional languages such as Scheme or
ML[9, lo]. His aim was to study the analysis as well as its
applications : the first half of his PhD thesis is devoted to the
analysis semantics and the second to application examples.
He has defined a general analysis of which the Ocfa is a special
case. He has also used a more precise analysis called the
“Icfa”, which was prototyped in T [4], a Scheme compiler.
Shivers has briefly given time figures for the lcfa analysis but
no precise measures of its costs and benefits. Therefore no
conclusions can be drawn on its relevance in real situations.
Shivers has shown several applications of the control flow
analysis but the optimizations he has mentioned (classical
optimizations of “data flow analysis”) are already made in our
compiler without the Ocfa. The main reason is that, as T uses
cps as intermediate language, the control is very dynamic. In
this case, a control flow analysis is mandatory to isolate static
parts of the control. We do not have these problems since we
use a suitable intermediate language. As a consequence; we
have advantageously used the Ocja analysis to perform others
optimizations such as the closures allocation optimization.
fcfo gives more refined approximations: rather than only
knowing which functions are invoked on each call site, the
1 cja approximations indicate how functions have been passed
around to reach the call site. But we don’t think that this
more refined approximations help the compilation: what can
be done with this information in a compiler ? We have found
no answers to this question. This is .the reason why we chose
the Ocfo rather than the lcfo in our compiler.

l Guillqrmo Rozas shows, in his paper [6], how by using a
technique close to the Ocfa, he is able to compile in the same
way a program written with the fix point operator Y, and
a program using special forms to introduce local recursive

calls. His paper focused on how the analysis works rather
than on its possible uses. He stressed problems we have not
mentioned here, such as the elimination of useless environ-
ments, or the errors that can be introduced by the results
of a control analysis. Unfortunately, although the optimiza-
tions have been implemented in hi compiler (liar), he gave
no measures allowing to have an idea of their impact.

l Previous closure analyses have to be compared to the one
presented in this article. D. Kranz’s PhD thesis [S] and N.
SCniak’s one [7] are devoted to closure analysis. Both of them
describe almost the same analysis. They divide functions in
two sets: the ones requiring environment allocation and the
ones which do not. The algorithms presented in these theses
to decide to allocate or not closures correspond exactly to the
computation of our S property. This means that, in those
contexts, if a function does not satisfy S, then its closure is
allocated. In our case, it will be so only if it does not satisfy,
in addition to S, the X and 7 predicates. Since Kranz’ and
SBniak’s analyses are strictly subsumed by ours, the results
obtained with Ocfa analysis are at least as good as theirs.

Conclusion

Using an already known analysis (the Ocfn), this paper de-
scribes a new optimization. It concerns closure allocations.
For several “real programs” we measure that the new closures
optimization removes 87 % of allocations. This improvements
represent a gain of 70 % on execution times and 60 % on
the sizes of the object files produced (more than two times
smaller). All modern functional languages such as ML and
Scheme are in the scope of the presented optimization.

References.

111

PI

t31

141

PI

161

PI

[81

PI

IlO1

J.F. Bartlett. Scheme->C a Portable Scheme-to-C Compiler. Re-
search Report 89 1, DEC Western Research Laboratory, Palo Alto,
California, January 1989.

P.H. Hartel, H. Glase, and J.M. Wild. Compilation of Functional
Languages Using Flow Graph Analysis. Software - Practice and
Ezperience, 24(2):127-173, February 1994.

T. Johnson. Lombdo Lifting : Transforming Programa to Recur-
sive Equations. In Proceedings of the ACM Conference on Con-
ference on Functional Programming Languages and Computer
Architecture, pages 190-203,1985.

D. Kranz, R. Kesley, J. Rees, P. Hudak, J. Philbin, and N. Adams.
ORBIT: An optimizing compiler for Scheme. In Symposium on
Compiler Construction, pages 219-233, Palo Alto, California,
June 1986. ACM.

D.A. Kranz. ORBIT: An Optimizing Compiler For Scheme.
PhD thesis, Yale university, February 1988.

G.J. Rozas. Taming the Y operator. In Conference Record of the
1982 ACM Symposium on Lisp and Functional Programming,
pages 226-234. ACM, June 1992.

N. S&&k. Thiorie et pratique de Sqil: un langage intermtdi-
aire pour la compilation des langoges jonctionnels. PhD thesis,
Univernite Pierre et Marie Curie (Paris VI), November 1991.

M. Serrano. Bigloo user’8 manual. Technical Report to appear,
INRIA-Rocquencourt, fiance, 1994.

0. Shivers. Control flow analysis in scheme. In Conference on
Programming Language Design and Implementation, Atlanta,
Georgia, June 1988.

0. Shivers. Control-Flow Analysis of Higher-Order Languages
or Taming Lambda. CMU-CS-91-145, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA 15213, May
1991.

.

122

