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Abstract 

Control flow analysis (cfa) is now well known but is not 
widely used in real compilers since optimizations that can 
be achieved via cfa are not so clear. This paper aims at 
showing that control flow analysis is very valuable in prac- 
tice by presenting a fundamental optimization based on cfa: 
the closure representation algorithm, the essential optimiz- 
ing phase of a X-language compiler. Since naive and regular 
schemes to represent functions as heap allocated structures 
is far too inefficient, the main effort of modern functional 
languages compilers is devoted to minimize the amount of 
memory allocated for functions. In particular, compilers try 
to discover when a procedure can safely be handled without 
any allocation at all. Previously described methods to do 
so are ad hoc, depending on the language compiled, and not 
very precise. Using cfa, we present a general approach which 
produces better results. This refined closure analysis sub- 
sumes previously known ones and optimizes more than 90 % 
of closure on the average. 
This optimization is fully integrated into the Bigloo com- 
piler, so that we can report reliable measures obtained for 
real world programs. Time figures show that analyses based 
on cfa can be very efficient: when the compiler uses the im- 
proved closure allocation scheme the resulting executable pro- 
grams run more than two time faster. 
KEYWORDS: Scheme, ML, compilation, closure analysis, control 
flOW CZdy8i8. 

Introduction 

For several years, control flow analysis (the determination 
of the call graph in the presence of functions as first-class 
values) has been studied in the literature about functional 
language compilation. Several theoretical models have been 
set up, and several algorithms have been suggested. Since 
these algorithms are complex, the attention has been focused 
on their design. But some crucial, although pragmatic, ques- 
tions remain. Are these algorithms really useful in pratice ? 
What can they really improve ? This paper gives an impor- 
tant optimization for which cfa proves to be interesting: the 
reduction of closures allocation. Control flow analysis com- 
putes approximations of functional operators. These approx- 
imations are the basis of our closure allocation scheme. This 
optimizing closure analysis has a sound theoretical basis and 
subsumes previously known ones. This analysis optimizes 
more than 90 % of closures on the average. 
The optimization described in this paper is fully inte- 
grated into the Bigloo Scheme compiler (Available by any- 
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mous ftp from ftp.inria.fr [192.93.2.54], in the directory 
/INRIA/Projects/icsla/Implementations [8]). We can 
therefore report reliable measures of its effectiveness. Our 
figures show that closure optimization leads to executable 
programs running 70 % faster (see section 3). 
The paper is organized as follows : section 1 presents the 
control flow analysis. Section 2 details the closure analysis. 
Section 3 gives benchmark figures and demonstrates the ben- 
efit of the analysis. 

1 The control flow analysis 

Control flow of modern functional language such as Scheme 
and ML, where functions are first-class citizens, m’ay, by na- 
ture, be strongly dynamic. Nevertheless, static parts of the 
control can be revealed by control flow analysis. 
The analysis we have made in Bigloo is close to the “Ocfa” 
(Oth-order Control Flow Analysis) described by 0. Shivers 
in hi Ph. D. thesis [lo]. First, for each functional call in 
a program it statically computes an approximation of the 
set of functions that can be invoked in any execution. The 
approximations are sometimes too rough (for example, they 
contain too many elements to be relevant); but they are safe. 
Since the language we compile is the full Scheme language, 
we have been obliged to adapt Shivers’ algorithm to deal with 
addtional constructs he did not consider. In addition, other 
data types approximations are computed. 
Shivers has given a rigorous formalism to express a class of 
control flow analysis. On this basis, our work has focused on 
the utilizations of this analysis in real situations. For this 
reason, we shall just present the algorithm without redling 
its theoretical basis nor proving its soundness (see Shivers’ 
thesis). 

1.1 The language used 

Bigloo does not use continuation passing style (cps) as inter- 
mediate language. Therefore, by contrast to previous works, 
the language our cfa algorithm works on is not cps; it is 
a simplified direct style Scheme which looks like Lisp. Its 
grammar can be found below : 
Syntactic categories 

F” : 
Varld (Variables identifier) 

E E 
px;Id (finctiops identifier) 

(Expressions) 
n E 
r E 

Fey Pwrm 
(Definition) 

c E Seq (Non-empty sequence of expressions) 
Concrete syntax 

n ::= r...r 
r ::= (define (F V.. V) X) 

( (define V) 
E ::= V 

) (set! V E) 
1 (labels ((F (V v) C) (F (V V) C)) X) 
1 (if E E E) 
1 (function F) 



1 (funcall V E . E) 
1 (failure) 
1 (FE... E) 

D ::= EE... E 

The keywords define, set !, and if belong to Scheme and 
have their usual meaning. Moreover, we have borrowed from 
Common Lip function, funcall and labels. The failure 
form allows us to stop the computation; its semantics specifies 
that its call continuation will not be invoked. Moreover our 
language offers modules in which variables can be imported, 
exported or static (local to a module). 

Note: The lambda form does not exist, but functional values can 
be obtained by composing function and labels. Therefore, what 
is usually writtenin Scheme : (lambda (. . .) . . .), must be written 
inourlanguage: (labels ((id (...) . ..)) (function id)). 

Note: The call/cc function does not appear in OUT language since 
it is not a special form but just a library function. This function 
does not need special processing. 

1..2 The algwithm 

We now present the approximation algorithm. In section ?? 
we use it to approximate types, the reader may refer to this 
section to get an intuitive idea of the general approximation 
algorithm. The algorithm performs a simple case analysis 
of its program argument. It needs informations about the 
identifiers appearing in the program to compute approxima- 
tions. These informations about variables are described by 
five logical properties : a variable class predicate, function or 
not function (7UnT), and we define four locality properties: 
7092 and ESC for variables bound to functions, and &OC, 
QLO for other variables. 
Formally, for all the variables appearing in a program : 

LXX(u) cs TV is a m variable. 
FLCO(v) e w is a global variable. 
7072(u) + II is aforeign function defined in another language 

(the implementation language, e.g. C or assembler). 
&SC(u) e u is an wping function (defined in another module 

or exported). 

And for all the approximations computed by the algorithm : 
P-UN(z) e> c E FunId. 

Note: Only global functions can be exported or imported, so they 
are the only ones that can satisfy the &SC predicate. 
The abstract syntax tree is annotated with subsets of the 
following set : R = { T, I } U FunId 
Approximations are sets whose elements are types, functions 
or two specific values, T denoting the undefinedobject and I 
an approximation not yet computed. Every approximation 
containing T is undefined. These approximations are ob- 
tained using the A function. Initially, all the approximations 
have {I} as value. The only operation defined on approxima- 
tions, named add-app ! is the extension of an approximation 
by a value. It is defined as follows : 

V+ E R, u EVarId u FunId, i j y = A(v) then 

add-app!( V,I ) + A(v) = if z = I then y else {z}U y. 

Functions being complex objects, we access their different 
slots using the following projections, ibody for their body and 
Jformaisi for their ith formal parameter. To get the approx- 
imations, we process a fix point iteration (until no new ap- 
proximations are added) with the following algorithm : 

ocfo-czp( exp ) = 
case exp of 

[ var ] : 

Ocfa-vor( var ) 
[ (set! vsr val) ] : 

Ocfa-set!( vw, val ) 
[ (labels ((fl (al, . al,,,nl ) el) . (f,, .)) exp) ] : 

Ocfa-ezp( exp ) 
[(if test then else) ] : 

Ocfa-ezp( test ), 
Ocfa-ezp( then ) U Ocja-ezp( else ) 

[ (function f) ] : 
tfl 

[ (funcall fun al a,)] : 
Ocfa-unkmown-app(Ocfa-ezp(fun), . . ., Ocfa-ezp(a,)) 

[(failure) ] : 
(II 

[ (fun a, a,) ] : 
Ocfa-known-app(fun, . ., Ocfa-ezpp(a,)) 

Ocfa-var( var ) = 
cond 

COC(var) : A( var ) 
GLO(var) : { T } 

Ocfa-set!( VW, val ) = 
cond 

Ccqvar) : 
VD E ocf+czp( val ), add-app!( VW, z ) 

PCO(var) : 
set-top!( Ocfa-ezp( val ) ) 

Ocfa-unknown-app( A, Al, . . ., A,, ) = 

U Ocfa-try-app( f, Al, . ., An ) 

IEA 

ocfo-try-app( f, Al, . ., A, ) = 
cond 

FUN(f): 
Ocfa-known-app( f, Al, . ., A, ) 

T=f: 
Vi E [l,n], set-top!( Ai ), { T } 

else : 
Ocfa-error() 

Ocfa-known-app( \lar, Al, . . ., A, ) = 
cond 

ESC( var ) : 
set-top!( Ocfa-ezp( varlb,dy ) ), 

Vi E [l,n] set-top.‘( Ai ), { T ) 
Fem( var ) : 

Ocja-foreign-app( var, Al, . . ., An ) 
else : 

Ocfa-function-body( var, Al, ., A, ) 
Ocfa-function-body( VW, Al, ., An ) = 

Vi E [l, n], V+ E Ai add-epp!( ~arllov,.fvi 7 z )* 
oCf-Zp( Wlbody ) 

set-top.‘( A ) 
V a f A, set-one-top!( a ) 

set-one-top!( a ) 
cond- 

7U~(a)h(70~(a)VesC(a)): 
Vi E (1, n], set-top!(a llorm.~,i) 

else : add-app!( a, T ) 

Our algorithm is presented in a simplified way, aa programs 
are supposed to be correct and fully alpha-converted. Fur- 
thermore, one can see that our algorithm could fall in an infi- 
nite loop. This could arise when approximating self-recursive 
functions (in the function Ucfa-known-app). Thii is straight- 
forwardly avoided by using a stamp technique that prevents 
computing several approximations of the same function in the 
same iteration. These simplifications do not affect the rest of 
the paper. 

2 Closures allocation 

Scheme is dynamically typed, computed functional calls, 
where the function is not a constant syntactically known 
or recognized during compilation, must be identified. It is 
mandatory to check that the object to be applied is a func- 
tion and that its arity is compatible with the number of ar- 
guments provided. Furthermore, Scheme has two different 
types of functions, fix arity and variable arity; procedures 
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can have two entry points; one for each type of function. As 
a consequence, the minimum size of a procedure (without its 
environment) is four words. We show in this Section that 
using the Ocfa analysis, we can reduce the size of procedures. 
Such an optimization depends on the way procedures are 
used. For that purpose, we introduce the concept of proce- 
dure family. Intuitively, the set FunId of program functions 
is partitioned in such a way that ali elements belonging to the 
same partition are applied at the same places in the program. 

2.1 Procedures family 

Let us first give some definitions. Let SITE be the set of 
call sites of the program. For each element of SITE, the Ocfa 
has computed the functions approximations. That is, for all 
s = [(funcall f . . .)] belonging to the set SITE, the Ocfa has 
computed A(f). 
We introduce the function US& which characterizes the use of 
program functions. We recall that A gives, for each call, the 
set of functions that can be applied. By contrast, USE gives, 
for each function, the set of sites where it can be invoked. Its 
definition can be found below : 

Vf E FunId, USE(P) = 
{s E SITE 1s = [(funcall g . . .)] A f E A(g)} 

Let us introduce three properties, 7, X and S. 

7 property: A function f satisfies 7 if for all its call sites 
[(funcall g . . .)], all the elements belonging to the ap 
proximations set of g are functions a.lso satisfying the T 
predicate. This predicate ailows to group together func- 
tions according to their utilization family. Its definition 
is: 

Vj E FunId, 7(f) + 
+SC(f) A Vs = [(funcall g . . .)] E US&(f) 

Va E Ahha # f,J=V(a.) A I(a) 

X property: A function satisfies the X predicate if for ev- 
ery call site, it is the only function that can be invoked. 
The definition of X is : 

-ESC(f) A (Vs = [(funcall g . . .)] E USE(f), A(g) = {f}) 

S property: A function f satisfies the S property if it 
does not exist any funcall site where f can be invoked. 
The definition of S is : 

VIE FunId,S(f) cs GSC(f)r\US&(f)= 0 

Note: vj E FunId, S(j) * X(j), X(j) * 7(j) 

Deflnition 1 Let s be [(funcall f . . .)I. If there is a function 

in d(f) that satisfies the 7 predicate, then d(f) is called a 
family of procedures. 

Proposition 1 For every f in FunId, if f satisfies the S 
predicate, then f does not require any allocation, nor for a 
structure carrying the closure, neither for any environment. 

If a function f satisfies the S predicate, ail invocations to f 
are direct (not computed with the funcall form) and can 
only occur in the definition scope of f. Then, each call 1.0 f 
can be compiled as a direct branch (if f has free variables, 
they are added to the list of the formal arguments) 0 

Proposition 2 Functions which are never used as actual ar- 
guments nor returned as values satisfy the S predicate. 

This proposition is obvious because those functions are al- 
ways directly invoked (by contrast to the computed calls) ; 
they never appear in any funcall 0 

Note: This proposition is very important because most of the 
functions are always directly used. Our control analysis can be 

here widely applied. 

Proposition 3 For every f in Funld, if f satisfies the 
X predicate, then f does not require closure structure 
allocation.’ 

Indeed, if a function f satisfies the X predicate then 

Vs = [(funcall g . . .)] E USE(f),d(g) = {f} 

This means that only f can be invoked. The computed call 
can be replaced (using a “lambda lifting" [3] pass if needed) 
by a direct call which does not require any allocation. 0 

Proposition 4 For each f in FunId, if f satisfies the 7 
predicate then f can be allocated in an more eficient way 
(i.e. with no tog, no ority, ond with only one entry point 
slot). 

Thii is true because if a function f satisfies the I predicate, 
it means that : 

Vs = [(funcall g . . .)] E US&(f),Vo E d(g), a E FunId. 
This family is known at compilation time, hence, type cor- 
rectness can be statically checked. Furthermore, if functions 
with variable arity are forbidden to satisfy the 7 predicate, 
then one entry point is enough. 0 

2.2 Compilation improvements 

We show in this section how the Bigloo compiler uses 
these three predicates. Four constructs can be improved: 
(function, funcall, labels and the global definition). Here 
are the improvements for each of them. 

(labels (cf...)... )...I or (define (f...)...) : If 
f satisfies the S predicate, then no closure is built for 
it. Function calls to f will be direct branches. 

(function f) : 

o Trivial case : if f satisfies the X predicate and if ah 
elements of USE(f) are in the lexical scope of f, the 
form is removed. 

o If f satisfies the X predicate and if f has zero or one 
free variable, then no allocation is required, The form 
is replaced by the free variable. If f has several free 
variables, the form is replaced by the (allocated) list of 
the free variables. 

o If f satisfies the lr predicate, then neither entry point 
for functions with variable arity, nor tag, nor arity slot 
have to be allocated ; hence a smaller structure is allo- 
cated. 

(funcall f . . . ) : 

0 Let [(funcall f . . .)] be a call site. If there exists an 
unique g in d(f) that satisfies the X predicate, then we 
compile a direct application. 

0 Let [(funcall f . . .)I be a call site. If all elements of 
d(f) satisfy the 7 predicate, we compile a computed 
application which is Ueasy” that is, with no type check- 
ing or arity checking. 

‘No allocation is required for the structure representing the closure ; 
by contrast, an environment can be allocated. 
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l (funcall f . . ,) or (f . . .) : If the result of the applica- 
tion is known and if we know that the function invoked 
does not have any side effects (this information is ob- 
tained by a previous pass), we replace the call by its 
result. 

2.3 Applications 

We study some typical examples to illustrate the improve- 
ments described above. Our goal is to provide an intuitive 
idea of the optimizations carried out. Section 3 is devoted 
to an analysis of the improved performances obtained by the 
techniques previously described. 

S: First order functions The program : 

(lstrec ((fib (lambda (XI) 
(if (C x 2) 1 (+ (fib (- x 1)) (fib (- x 2))))))) 

(fib 20)) 

includes no function used aa actual argument or returned 
value. Then, the function fib satisfies the S predicate. No 
allocation is required to run this program. At runtime, the 
fib function will only be a code entry point. 
This optimization is very important since like fib, many 
functions satisfy the S predicate. The measures of section 
3 will prove this. 

X: Currying In ML, all functions are unary ; a natural way 
to express functions with a higher arity is currying. The 
following program illustrates the improvement made when a 

function satisfies the X predicate. 

(define plus (lambda (x) (lambda (y) (+ x y)))) 
(define foo (lambda (I. y) ((plus x) y))) 

The function (lambda (y) (+ x y)> does, since it is only 
applied in the expression ((plus x) y). The nature of its 
allocation is changed by replacing it by the list of its free 
variables. Here, x is the only free variable. After optimiza- 
tion, the code becomes : 

(define plus (lambda (x1 x)) 
(define lambda-l (lambda (env yl (+ env ~111 
(define foo (lambda (x y) (lambda-l (plus x) y))) 

One can see that, in this case, no further allocation is needed. 

7: Denotational semantics Given a denotational seman- 
tics, our analysis is able to proves to all closures allocated to 
evaluated termes are applied at a same point in a program. 
All these closures satisfies the 7 predicates, hence all these 
functions form a family. It is possible to obtain a “byte-code” 
interpreter by carrying out an optimization of this family of 
procedures : rather than allocating closure, one can decide to 
give them a unique identifier and to represent them as a pair 
< num x enu >. Each calls to one of these procedures would 
become an indexed jump to the first projection of these pairs. 
These first projections could then be seen as “byte-codes” and 
the place in the program function are applied could be seen 
as “byte-code” interpreters. 

3 Measures 

This Section presents the results obtained by measuring code 
size, compilation times and execution times with and without 
O&-based optimisations. We investigate different programs, 
written in different styles by different people. They do not 

describe all realistic situations one can face but help to get 
an accurate idea of the optimization results obtained. 
The performances we give have been obtained using our com- 
piler, which generates C code. Three compilations have been 
launched for each program : the first one without any op 
timization, the second with some optimizations (common 
sub-expression elimination) (0)) and finally, one compilation 
with all optimizations, including the one presented in this pa- 
per (02). For all the compilation modes so far described, we 
have evaluated the number of closures allocations. We have 
also measured the compilations time. For each time figure, 
6 is the ratio 1 - 02/O. Time figures (expressed in seconds) 
present the average of several consecutive executions run on 
a Sun 4/670 (SS-2 equivalent). For each programs, compil. 
is the time in seconds to produce C code; compil.+cc is the 
global compilation time (with linking); .o size is the size of 
the file obtained after the C compilation (expressed in Kilo 
bytes); proc is the number of procedure allocations without 
any optimizations. In the 02 column, it represents the num- 
ber of closures which are not optimized; 7 is the number of 
procedures that have been simplified since they satisfy the 
7 predicate; X is the number of procedures eliminated since 
they satisfy the X predicate; S is the number of procedures 
eliminated since they satisfy the S predicate; run is the ex- 
ecution time of the program. 
Conform (569 lines, 5 iterations) uses many functions, but 
few of them are required to be allocated. The closure opti- 
mization has a great impact on this program. 

Conform 0 02 6 ’ 

compil. 6.4 m 6.4 s 60.5 I -845 % 
compil.+cc 72.6 8 66.1 * 100.5 8 -52 % 
.o size (Kbytes) 144 136 52 61 % 
prCM2 1 94 94 1 5 II 95 % 
7 I 0 
X 16 

S 73 
, ruu 52.2s 1 43.4s 1 15.8s 1 90% 

Enrley (661 lines, 5 iterations) uses vectors and each access 
to one of them requires a bound check. These numerous tests 
make the syntax tree wery large with many function calls. 
This slows down - the Ocfa. 

Earley 0 02 6 
compil. 5.7 6 5.7 s 11.9 8 -108 % 
compil.+cc 21.5 8 21.5 8 21.1 8 2 % 
.o size (Kbytes) 120 90 33 63 % 
proc 75 1 75 4 95 % 
I I 1 0 11 - 
X 1 0 11 - 
s I 1 71 11 - 1 
I-“Il 11 33.7 8 ) 33.2 s ) 7.0 8 11 79 % ] 

Semantics (231 lines, 5 iterations) being a denotational se- 
mantics, the optimization described in Section 2.3 is applied. 
This explains why there is so many functions satisfying the 
7 predicate in this example. 

Semantics I 0 1 02 1 6 
compil. 1 4.2 s 4 8 1 13.1 8 -227 % 
c0mp11.+cc ) 29.8 8 29.4 8 1 23.4 8 20 % 
.O size (Kbytes) 1 49 45 1 18 1 60 % 
proc 1 54 54 ] 8 1 85% 
2- I I [ 36 11 _ 

1 

X 1 4 1) - 
s I I 8 11 _ 
run 11 32.5 s 32.6s 1 15.4s 11 53% ] 

l Since our benchmarks are not usual (the traditional Gabriel 
benchmarks do not fit our needs since they are rather small 
and they are not higher order), we shortly give the time fig- 
ures for another Scheme to C compiler. We chose Bartlett’s 



one [l]. The measures have been obtained with the March 
15th, 1993 release. All produced executables are unsafe and 
use fixnum arithmetic. 

act 1 Semantics Conform Earley 
compil.+cc ( 29.9 8 55 8 111.5 8 
r”Sl 1 30.6 B 35.4 s 9.7 B 

l The Ocfa analysis is rather time consuming and it has a high 
complexity in the worst case: (O(n3) where n is the number 
of functions and calls). Furthermore it significantly increases 
the time spent in the first part of the compilation, although at 
an acceptable level. But, paradoxically, sometimes (earley 
and semantics) it allows to have a faster global compilation 
due to a better generated C code. Since the C compiler runs 
more slowly than Bigloo, the time lost in the first passes 
is compensated by the time gained in the last ones. This 
paradox can be observed for programs where the Ocfa reaches 
efficient results. Of course, for the others, the time lost is not 
compensated. In practice, for real-sized programs, the Ocfa 
analysis is perfectly usable. For example, Bigloo’s bootstrap 
(more than 30.000 Scheme lines) takes 45 minutes without 
Ocfa and 55 minutes using it. 
Moreover, as shown in the benchmark results, the Ocfa seems 
to require few iterations to reach the fix point. For our exam- 
ples, the maximum number of iterations is only 5. We used 
the analysis in the “real world” and we never found programs 
that required an polynomial number of iterations. 

4 Related works 

Three kinds of work are related to ours. First of them, the 
studies of control flow. 

l Olin Shivers has published numerous papers on control flow 
analysis in modern functional languages such as Scheme or 
ML[9, lo]. His aim was to study the analysis as well as its 
applications : the first half of his PhD thesis is devoted to the 
analysis semantics and the second to application examples. 
He has defined a general analysis of which the Ocfa is a special 
case. He has also used a more precise analysis called the 
“Icfa”, which was prototyped in T [4], a Scheme compiler. 
Shivers has briefly given time figures for the lcfa analysis but 
no precise measures of its costs and benefits. Therefore no 
conclusions can be drawn on its relevance in real situations. 
Shivers has shown several applications of the control flow 
analysis but the optimizations he has mentioned (classical 
optimizations of “data flow analysis”) are already made in our 
compiler without the Ocfa. The main reason is that, as T uses 
cps as intermediate language, the control is very dynamic. In 
this case, a control flow analysis is mandatory to isolate static 
parts of the control. We do not have these problems since we 
use a suitable intermediate language. As a consequence; we 
have advantageously used the Ocja analysis to perform others 
optimizations such as the closures allocation optimization. 
fcfo gives more refined approximations: rather than only 
knowing which functions are invoked on each call site, the 
1 cja approximations indicate how functions have been passed 
around to reach the call site. But we don’t think that this 
more refined approximations help the compilation: what can 
be done with this information in a compiler ? We have found 
no answers to this question. This is .the reason why we chose 
the Ocfo rather than the lcfo in our compiler. 

l Guillqrmo Rozas shows, in his paper [6], how by using a 
technique close to the Ocfa, he is able to compile in the same 
way a program written with the fix point operator Y, and 
a program using special forms to introduce local recursive 

calls. His paper focused on how the analysis works rather 
than on its possible uses. He stressed problems we have not 
mentioned here, such as the elimination of useless environ- 
ments, or the errors that can be introduced by the results 
of a control analysis. Unfortunately, although the optimiza- 
tions have been implemented in hi compiler (liar), he gave 
no measures allowing to have an idea of their impact. 

l Previous closure analyses have to be compared to the one 
presented in this article. D. Kranz’s PhD thesis [S] and N. 
SCniak’s one [7] are devoted to closure analysis. Both of them 
describe almost the same analysis. They divide functions in 
two sets: the ones requiring environment allocation and the 
ones which do not. The algorithms presented in these theses 
to decide to allocate or not closures correspond exactly to the 
computation of our S property. This means that, in those 
contexts, if a function does not satisfy S, then its closure is 
allocated. In our case, it will be so only if it does not satisfy, 
in addition to S, the X and 7 predicates. Since Kranz’ and 
SBniak’s analyses are strictly subsumed by ours, the results 
obtained with Ocfa analysis are at least as good as theirs. 

Conclusion 

Using an already known analysis (the Ocfn), this paper de- 
scribes a new optimization. It concerns closure allocations. 
For several “real programs” we measure that the new closures 
optimization removes 87 % of allocations. This improvements 
represent a gain of 70 % on execution times and 60 % on 
the sizes of the object files produced (more than two times 
smaller). All modern functional languages such as ML and 
Scheme are in the scope of the presented optimization. 
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