TA SCHEDULE: TA sessions are held in Ryerson-255, Monday, Tuesday and Thursday 5:30-6:30pm.
INSTRUCTOR'S EMAIL: laci@cs.uchicago.edu
TA's EMAIL: hari@cs.uchicago.edu, raghav@cs.uchicago.edu IMPORTANT: Take-home test Friday, April 29, due Monday, May 2, before class.

Perfect Graphs

Shannon capacity of a graph G is: $\quad \Theta(G):=\lim _{k \rightarrow \infty}\left(\alpha\left(G^{k}\right)\right)^{1 / k}$.
Exercise 10.1 Show that $\alpha(G) \leq \chi(\bar{G}) . \overline{(G}$ is the complement of G.)

Exercise 10.2 Show that $\chi(\overline{G \cdot H}) \leq \chi(\bar{G}) \chi(\bar{H})$.
Exercise 10.3 Show that $\Theta(G) \leq \chi(\bar{G})$.

So, $\alpha(G) \leq \Theta(G) \leq \chi(\bar{G})$.
Definition: G is perfect if for all induced sugraphs H of $G, \quad \alpha(\bar{H})=\chi(H)$, i. e., the chromatic number is equal to the clique number.

Theorem 10.4 (Lovász) G is perfect iff \bar{G} is perfect.
(This was open under the name "weak perfect graph conjecture.")
Corollary 10.5 If G is perfect then $\Theta(G)=\alpha(G)=\chi(\bar{G})$.

Exercise 10.6 (a) K_{n} is perfect. (b) All bipartite graphs are perfect.

Exercise 10.7 Prove: If G is bipartite then \bar{G} is perfect. Do not use Lovász's Theorem (Theorem 10.4).

The smallest imperfect (not perfect) graph is $C_{5}: \quad \alpha\left(\overline{C_{5}}\right)=2, \chi\left(C_{5}\right)=3$.
For $k \geq 2, C_{2 k+1}$ imperfect.
Definition: A graph is minimally imperfect if it is imperfect but deleting any vertex leaves a perfect graph.

Exercise 10.8 For $k \geq 2, C_{2 k+1}$ and its complement are minimally imperfect.
The Perfect Graph Conjecture (Berge): These are the only minimally imperfect graphs. This was proved recently in a monumental paper:

Theorem 10.9 (Perfect Graph Theorem) (Maria Chudnovsky, Neil Robertson, Paul Seymour, Robin Thomas, 2005) The odd cycles of length ≥ 5 and their complements are all the minimally imperfect graphs.

Definition: A partially ordered set (poset) $\mathcal{P}=(S, R)$ is a set S with a relation $R \subseteq S \times S$ such that R is
(a) reflexive $((x, x) \in R)$
(b) symmetric $((x, y) \in R$ and $(y, x) \in R \Rightarrow x=y)$
(c) transitive $((x, y) \in R$ and $(y, z) \in R \Rightarrow(x, z) \in R)$.
R is usually denoted by " \leq," so instead of " $(x, y) \in R$ " we write " $x \leq y$."
Examples: 1) Family of sets with respect to inclusion.
2) Positive integers with respect to divisibility.

Definitions: (i) In a poset $\mathcal{P}=(S, \leq), a$ and b are comparable if $a \leq b$ or $b \leq a$.
(ii) The comparability graph of $\mathcal{P}=(S, \leq)$ is a graph $G=(S, E)$, where $E=\{$ comparable pairs of distinct elements of $S\}$.
(iii) A clique in the comparability graph of a poset is a chain in the poset: $a_{1}<a_{2}<\cdots<a_{k}$. Example of a chain among integers with respect to divisibility: $2|6| 42 \mid 210$.
(iv) An independent set in the comparability graph is called an antichain, e.g. $\{10,12,35\}$

Observation. If G is the comparability graph of a poset $\mathcal{P}=(S, \leq)$ then the chromatic number of G is the minimum number of colors to color S such that the vertices of each color form an antichain.

Exercise 10.10 Show that $\chi(G)=$ size of a maximum chain.
(Hint: To prove \leq, use induction on the length of maximum chain.)
Observation: An induced subgraph of a comparability graph is a comparability graph.
Corollary 10.11 Comparability graphs are perfect.
Using Lovász Theorem (Theorem 10.4), we have:

Corollary 10.12 Incomparability graphs are perfect.
This translates to Dilworth's celebrated theorem:

Corollary 10.13 (Dilworth, 1947) The size the largest antichain in a poset $=$ minimum number of chains into which the poset can be partitioned.

Exercise 10.14 Prove: The size the largest antichain in a poset \leq minimum number of chains into which the poset can be partitioned. (Hint: PHP.)
(This is the trivial direction of Dilworth's theorem.)

Definition: The power-set of a set $S:=$ set of all subsets of S.
This is a poset under inclusion. An antichain of size $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$ can be found in the power-set of S if $|S|=n$. (Take all subsets of size $\left\lfloor\frac{n}{2}\right\rfloor$.)

Theorem 10.15 (Sperner's Theorem) If $A_{1}, \ldots, A_{m} \subseteq[n]$, are pairwise incomparable, then $m \leq\binom{ n}{\left\lfloor\frac{n}{2}\right\rfloor}$.

Exercise 10.16 * Prove Sperner's Theorem by dividing the power-set into $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$ chains.

Theorem 10.17 (LYM inequality) If $A_{1}, \ldots, A_{m} \subseteq[n]$, are pairwise incomparable, then $\sum_{i=1}^{m} \frac{1}{\left(\left|A_{i}\right|\right)} \leq 1$.

An antichain of sets is also called a "Sperner family."

Exercise 10.18 Prove: The LYM inequality implies the Sperner's Theorem.

Exercise 10.19 Let $r_{1}, r_{2}, \ldots, r_{n}>0$ real numbers, $b>0$. Show that $P\left(\sum_{i=1}^{n} a_{i} r_{i}=b\right) \leq \frac{c}{\sqrt{n}}$ where the coefficients a_{i} are decided by coin tosses: we set $a_{i}=1$ if the i-th coin comes up Heads and $a_{i}=0$ if the i-th coin comes up Tails.

Exercise 10.20 (Ramsey number $R(3,4)$) (a) $9 \longrightarrow(3,4) . \quad(b) 8 \nrightarrow(3,4)$.

