Re-revised notes 4-22-2005 10pm

 CMSC 27400-1/37200-1 Combinatorics and Probability
 Spring 2005

 Lecture 10: April 20, 2005
 Instructor: László Babai

 Scribe: Raghav Kulkarni

TA SCHEDULE: TA sessions are held in Ryerson-255, Monday, Tuesday and Thursday 5:30–6:30pm. INSTRUCTOR'S EMAIL: laci@cs.uchicago.edu TA's EMAIL: hari@cs.uchicago.edu, raghav@cs.uchicago.edu IMPORTANT: Take-home test Friday, April 29, due Monday, May 2, before class.

Perfect Graphs

Shannon capacity of a graph G is: $\Theta(G) := \lim_{k \to \infty} (\alpha(G^k))^{1/k}$.

Exercise 10.1 Show that $\alpha(G) \leq \chi(\overline{G})$. (\overline{G} is the complement of G.)

Exercise 10.2 Show that $\chi(\overline{G \cdot H}) \leq \chi(\overline{G})\chi(\overline{H})$.

Exercise 10.3 Show that $\Theta(G) \leq \chi(\overline{G})$.

So, $\alpha(G) \leq \Theta(G) \leq \chi(\overline{G})$.

Definition: G is perfect if for all induced sugraphs H of G, $\alpha(\overline{H}) = \chi(H)$, i.e., the chromatic number is equal to the clique number.

Theorem 10.4 (Lovász) G is perfect iff \overline{G} is perfect. (This was open under the name "weak perfect graph conjecture.")

Corollary 10.5 If G is perfect then $\Theta(G) = \alpha(G) = \chi(\overline{G})$.

Exercise 10.6 (a) K_n is perfect. (b) All bipartite graphs are perfect.

Exercise 10.7 Prove: If G is bipartite then \overline{G} is perfect. Do not use Lovász's Theorem (Theorem 10.4).

The smallest imperfect (not perfect) graph is C_5 : $\alpha(\overline{C_5}) = 2, \chi(C_5) = 3.$ For $k \ge 2, C_{2k+1}$ imperfect.

Definition: A graph is *minimally imperfect* if it is imperfect but deleting any vertex leaves a perfect graph.

Exercise 10.8 For $k \ge 2$, C_{2k+1} and its complement are minimally imperfect.

The Perfect Graph Conjecture (Berge): These are the only minimally imperfect graphs. This was proved recently in a monumental paper:

Theorem 10.9 (Perfect Graph Theorem) (Maria Chudnovsky, Neil Robertson, Paul Seymour, Robin Thomas, 2005) The odd cycles of length ≥ 5 and their complements are all the minimally imperfect graphs.

Definition: A partially ordered set (poset) $\mathcal{P} = (S, R)$ is a set S with a relation $R \subseteq S \times S$ such that R is

(a) reflexive $((x, x) \in R)$

(b) symmetric $((x, y) \in R \text{ and } (y, x) \in R \Rightarrow x = y)$

(c) transitive $((x, y) \in R \text{ and } (y, z) \in R \Rightarrow (x, z) \in R)$.

R is usually denoted by " \leq ," so instead of " $(x, y) \in R$ " we write " $x \leq y$."

Examples: 1) Family of sets with respect to inclusion.

2) Positive integers with respect to divisibility.

Definitions: (i) In a poset $\mathcal{P} = (S, \leq)$, a and b are comparable if $a \leq b$ or $b \leq a$.

(ii) The comparability graph of $\mathcal{P} = (S, \leq)$ is a graph G = (S, E), where $E = \{\text{comparable pairs of distinct elements of } S \}$.

(iii) A clique in the comparability graph of a poset is a *chain* in the poset: $a_1 < a_2 < \cdots < a_k$. Example of a chain among integers with respect to divisibility: 2|6|42|210.

(iv) An independent set in the comparability graph is called an *antichain*, e.g. {10, 12, 35}

Observation. If G is the comparability graph of a poset $\mathcal{P} = (S, \leq)$ then the chromatic number of G is the minimum number of colors to color S such that the vertices of each color form an antichain.

Exercise 10.10 Show that $\chi(G) = size$ of a maximum chain. (*Hint: To prove* \leq , use induction on the length of maximum chain.)

Observation: An induced subgraph of a comparability graph is a comparability graph.

Corollary 10.11 Comparability graphs are perfect.

Using Lovász Theorem (Theorem 10.4), we have:

Corollary 10.12 Incomparability graphs are perfect.

This translates to Dilworth's celebrated theorem:

Corollary 10.13 (Dilworth, 1947) The size the largest antichain in a poset = minimum number of chains into which the poset can be partitioned.

Exercise 10.14 Prove: The size the largest antichain in a poset \leq minimum number of chains into which the poset can be partitioned. (Hint: PHP.) (This is the trivial direction of Dilworth's theorem.)

Definition: The power-set of a set S := set of all subsets of S. This is a poset under inclusion. An antichain of size $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ can be found in the power-set of S if |S| = n. (Take all subsets of size $\lfloor \frac{n}{2} \rfloor$.)

Theorem 10.15 (Sperner's Theorem) If $A_1, \ldots, A_m \subseteq [n]$, are pairwise incomparable, then $m \leq \binom{n}{\lfloor \frac{n}{2} \rfloor}$.

Exercise 10.16 * Prove Sperner's Theorem by dividing the power-set into $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ chains.

Theorem 10.17 (LYM inequality) If $A_1, \ldots, A_m \subseteq [n]$, are pairwise incomparable, then $\sum_{i=1}^{m} \frac{1}{\binom{n}{\lfloor A_i \rfloor}} \leq 1.$

An antichain of sets is also called a "Sperner family."

Exercise 10.18 Prove: The LYM inequality implies the Sperner's Theorem.

Exercise 10.19 Let $r_1, r_2, \ldots, r_n > 0$ real numbers, b > 0. Show that $P(\sum_{i=1}^n a_i r_i = b) \leq \frac{c}{\sqrt{n}}$ where the coefficients a_i are decided by coin tosses: we set $a_i = 1$ if the *i*-th coin comes up Heads and $a_i = 0$ if the *i*-th coin comes up Tails.

Exercise 10.20 (Ramsey number R(3,4)) (a) $9 \longrightarrow (3,4)$. (b) $8 \not\longrightarrow (3,4)$.