
Re-revised notes 4-22-2005 10pm

CMSC 27400-1/37200-1 Combinatorics and Probability Spring 2005

Lecture 10: April 20, 2005
Instructor: László Babai Scribe: Raghav Kulkarni

TA SCHEDULE: TA sessions are held in Ryerson-255, Monday, Tuesday and Thursday
5:30–6:30pm.
INSTRUCTOR’S EMAIL: laci@cs.uchicago.edu
TA’s EMAIL: hari@cs.uchicago.edu, raghav@cs.uchicago.edu
IMPORTANT: Take-home test Friday, April 29, due Monday, May 2, before class.

Perfect Graphs

Shannon capacity of a graph G is: Θ(G) := limk→∞ (α(Gk))
1/k
.

Exercise 10.1 Show that α(G) ≤ χ(G). (G is the complement of G.)

Exercise 10.2 Show that χ(G ·H) ≤ χ(G)χ(H).

Exercise 10.3 Show that Θ(G) ≤ χ(G).

So, α(G) ≤ Θ(G) ≤ χ(G).

Definition: G is perfect if for all induced sugraphs H of G, α(H) = χ(H), i. e., the
chromatic number is equal to the clique number.

Theorem 10.4 (Lovász) G is perfect iff G is perfect.
(This was open under the name “weak perfect graph conjecture.”)

Corollary 10.5 If G is perfect then Θ(G) = α(G) = χ(G).

Exercise 10.6 (a) Kn is perfect. (b) All bipartite graphs are perfect.

Exercise 10.7 Prove: If G is bipartite then G is perfect. Do not use Lovász’s Theorem
(Theorem 10.4).
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The smallest imperfect (not perfect) graph is C5 : α(C5) = 2, χ(C5) = 3.
For k ≥ 2, C2k+1 imperfect.

Definition: A graph is minimally imperfect if it is imperfect but deleting any vertex leaves a
perfect graph.

Exercise 10.8 For k ≥ 2, C2k+1 and its complement are minimally imperfect.

The Perfect Graph Conjecture (Berge): These are the only minimally imperfect graphs.
This was proved recently in a monumental paper:

Theorem 10.9 (Perfect Graph Theorem) (Maria Chudnovsky, Neil Robertson, Paul
Seymour, Robin Thomas, 2005) The odd cycles of length ≥ 5 and their complements are
all the minimally imperfect graphs.

Definition: A partially ordered set (poset) P = (S,R) is a set S with a relation R ⊆ S × S
such that R is
(a) reflexive ((x, x) ∈ R)
(b) symmetric ((x, y) ∈ R and (y, x) ∈ R ⇒ x = y)
(c) transitive ((x, y) ∈ R and (y, z) ∈ R ⇒ (x, z) ∈ R).
R is usually denoted by “≤,” so instead of “(x, y) ∈ R” we write “x ≤ y.”
Examples: 1) Family of sets with respect to inclusion.
2) Positive integers with respect to divisibility.
Definitions: (i) In a poset P = (S,≤), a and b are comparable if a ≤ b or b ≤ a.
(ii) The comparability graph of P = (S,≤) is a graph G = (S,E), where E = {comparable
pairs of distinct elements of S}.
(iii) A clique in the comparability graph of a poset is a chain in the poset: a1 < a2 < · · · < ak.
Example of a chain among integers with respect to divisibility: 2|6|42|210.
(iv) An independent set in the comparability graph is called an antichain, e.g. {10, 12, 35}

Observation. If G is the comparability graph of a poset P = (S,≤) then the chromatic
number of G is the minimum number of colors to color S such that the vertices of each color
form an antichain.

Exercise 10.10 Show that χ(G) = size of a maximum chain.
(Hint: To prove ≤, use induction on the length of maximum chain.)

Observation: An induced subgraph of a comparability graph is a comparability graph.

Corollary 10.11 Comparability graphs are perfect.

Using Lovász Theorem (Theorem 10.4), we have:
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Corollary 10.12 Incomparability graphs are perfect.

This translates to Dilworth’s celebrated theorem:

Corollary 10.13 (Dilworth, 1947) The size the largest antichain in a poset = minimum
number of chains into which the poset can be partitioned.

Exercise 10.14 Prove: The size the largest antichain in a poset ≤ minimum number of
chains into which the poset can be partitioned. (Hint: PHP.)
(This is the trivial direction of Dilworth’s theorem.)

Definition: The power-set of a set S := set of all subsets of S.
This is a poset under inclusion. An antichain of size

(
n
bn

2
c

)
can be found in the power-set of

S if |S| = n. (Take all subsets of size bn
2
c.)

Theorem 10.15 (Sperner’s Theorem) If A1, . . . , Am ⊆ [n], are pairwise incomparable,
then m ≤

(
n
bn

2
c

)
.

Exercise 10.16 * Prove Sperner’s Theorem by dividing the power-set into
(
n
bn

2
c

)
chains.

Theorem 10.17 (LYM inequality) If A1, . . . , Am ⊆ [n], are pairwise incomparable, then∑m
i=1

1

( n
|Ai|)
≤ 1.

An antichain of sets is also called a “Sperner family.”

Exercise 10.18 Prove: The LYM inequality implies the Sperner’s Theorem.

Exercise 10.19 Let r1, r2, . . . , rn > 0 real numbers, b > 0. Show that
P (
∑n

i=1 airi = b) ≤ c√
n

where the coefficients ai are decided by coin tosses: we set ai = 1 if
the i-th coin comes up Heads and ai = 0 if the i-th coin comes up Tails.

Exercise 10.20 (Ramsey number R(3, 4)) (a) 9−→(3, 4). (b) 86−→(3, 4).


