
A Brief Introduction to the Lambda Calculus

Stuart A. Kurtz

Draft of March 29, 2004

1 Introduction

When you first learned about functions, they were most likely introduced as abstractions of
expressions.

For example, consider the expression 2 + 3, which can be immediately evaluated by the
rules of elementary arithmetic to give value 5. We can abstract, i.e., generalize the notion of
“adding 3 to 2” to that of “adding 3 to something,” giving rise the function f : x 7→ x + 3.
We can then apply this function to other arguments, e.g., f(4) = 4 + 3 = 7. This style of
function definition is intentional—functions are defined by specifying an intended means of
evaluation.

Later, you may have been encouraged to think of functions extensionally, i.e., as sets
of ordered pairs, e.g. f = {(x, y) : y = x + 3}. Such an approach conveys substantial
metamathematical advantages, but it comes at a terrible cost—functions are no longer things
that you can compute with.

The lambda calculus [Chu41] returns to the notion of functions as abstractions of expres-
sions. Abstraction is accomplished by the eponymous lambda (λ), by means of which we
could define the function f as λx. x + 3. An abstraction may be applied to an argument,
e.g.,

f 2 → (λx. x + 3) 2

→ 2 + 3

→ 5

Note that parenthesis are used to indicated grouping, the scope of the λ is considered to
extend as far as possible while remaining consistent with the parentheses, and that appli-
cation is represented by juxtaposing the function and its argument. Also note that the use
of parentheses is extremely sparing—with experience, fewer parentheses rather than more
improve readability.

For students of Lisp, this familiar example would be expressed using a syntax in where
the use of parenthesis is strictly regulated:

((lambda (x) (+ x 2)) 3) → (+ 2 3)

→ 5.

1

One of the nicest features of the lambda notation for functional abstraction is that it can
be used equally well to describe higher order functions, i.e., functions that take functions as
arguments, and return functions as results. For example, consider the composition function
f ◦ g : x 7→ f(g(x)). Properly understood, composition (◦) is a binary function that takes
functional two arguments (f and g), and produces another function. Thus, we could define
◦ = λf, g. λz. f (g z), so that

◦ (f, g) x → (λf, g. λz. f (g z)) (f, g) x

→ (λz. f (g z)) x

→ f (g x).

There are a few things to note about this. Application associates to the left, thus, for
example we can leave out parentheses in ◦ (f, g) x, which is interpreted as (◦ (f, g)) x, but
they are mandatory in f (g x). Multi-ary functions are handled by having lambda bind
a comma-separated list of arguments, and we introduce tupling in order create multi-ary
arguments. The body of a lambda expression can itself be a lambda expression, which is
how a function can return a function.

We could do it that way, but the designers of the lambda calculus approached matters
somewhat differently. One of the guiding principles in designing a mathematical theory is
parsimony, that is the principle that the undefined (basic) notions of the theory should be
as simple, and as few in number, as possible. Handling multi-ary functions as above requires
a number of complications: lambda has to be able to bind multiple variables, and we have
to introduce the notion of tupling to the language. A more parsimonious approach is via
currying, in which a binary function is viewed as a unary function that consumes the first
argument, and which returns a functional result that consumes the second argument. Thus,
the actual definition of composition in the lambda calculus is ◦ = λf. λg. λx. f (g x), and
we have

◦ f g x → (λf. λg. λz. f (g z)) f g x

→ (λg. (λz. f (g z)) g x

→ (λz. f (g z)) x

→ f (g x).

A second application of parsimony comes in answering the following question: “if lambda-
terms denote functions, what is the domain and range of these functions?” The answer is
already hinted at in the composition example: the domain and range of lambda-defined
functions are lambda-terms.

A third application of parsimony is in the choice of expressions over which we can abstract.
The solution to the domain and range question anticipates the solution to the expression
question: in the pure lambda calculus, we generalize over lambda-terms.

2

2 A Formal Development

Definition 1 (λ-terms) We begin by positing the existence of an infinite set of atomic
variables, x, y, z, We then define the set Λ of λ-terms as follows:

• every variable is a λ-term,

• if M and N are λ-terms, then apply(M, N) is a λ-term, and

• if x is a variable, and M is a λ-term, then lambda(x, M) is a λ-term.

2.1 What is a λ-term?

Definition 1 looks quite different from the informal presentation in Section 1. Indeed, it
differs from traditional approaches [Bar84, HS86]. The following discussion should make the
relationship clearer.

A term in a term-algebra should be thought of a tree. For example, the term that repre-
sents composition should not be thought of as the string of characters “λf. λg. λx. f (g x),”
but rather graphically as in Figure 1. The problem with such graphical forms is their unwield-

λ

f λ

g λ

x apply

f apply

g x

Figure 1: Graphical representation of the λ-term for composition.

iness, both typographically and computationally. But this point should not be forgotten:
even though we will often speak of strings such as “λf. λg. λx. f (g x)” as if they were
λ-terms, they are not λ-terms. They are convenient, terse ways to represent λ-terms1.

1The fastidious will point out that graphical objects such as Figure 1 are not λ-terms either. They’re
simply another representation: λ-terms are irreducibly abstract objects of mathematical discourse.

The point must be granted, but not dwelled upon. The correspondence between graphical representations
of abstract terms, and the abstract terms themselves, is simple and direct, whereas the correspondence
between textual representations and λ-terms relies on various essentially arbitrary conventions, such as the
scope rules and the left-associativity of application.

If in the end it seems that we’re begging the question of what λ-terms are, it is because we are: abstract
notions are abstract, and sustaining the attempt to reify them is foolish.

3

2.2 The Interpretation of Inductive Definitions

At this point, we return to Definition 1, which is written in the standard mathematical style,
and whose interpretation requires understanding the conventions of that style. A complete
discussion of these issues requires an excursion into descriptive set theory [Mos79], so our
treatment is necessarily sketchy.

A possible objection to Definition 1 is that it is impredicative: the notion to be defined
(λ-terms) is defined in terms of itself. Impredicative definitions can be dangerous, e.g.,
Russell’s paradox (a paradox of näıve set theory) rests on an impredicative definition. But
as regards Definition 1, there is considerable mathematical experience that defining a set
in terms of a countable initial set (the variables), and a countable set of finitary functions
(abstraction, application) is safe. Indeed, such definitions are called inductive, and it can be
proven that if arithmetic—the simplest non-trivial inductive theory—is consistent, then all
inductive definitions are free from paradox.

Another objection is that Definition 1 is not a well-definition, i.e., there may be multiple
sets that satisfy the definition, or perhaps none. The objection is valid: there are in fact
infinitely many sets that satisfy the definition. So what does the definition mean? The
mathematical convention is that the clauses in such a definition are exclusive and exhaustive,
and so every element of Λ is a variable, an abstraction, or an application, in precisely one
way. Again, assuming that arithmetic is consistent, it can be shown that inductive definitions
are well-definitions.

2.3 β-Reduction

At this point, we’ve only given the abstract syntax of λ-terms. To make it into an interesting
mathematical theory, we have to show how that syntax can be manipulated. The point
of rule-based definition of function is that you can evaluate the function at an argument
by applying its rule. If we think of abstractions (terms of the form λx. M) as rule-base
definitions of functions, then applications of abstractions (terms of the form (λx. M) N) cry
out for evaluation. In the λ-calculus, this process of evaluation is called β-reduction.

Definition 2 (Redex) A redex is a λ-term that consists of the application of an abstrac-
tion.

Redexes are simply the places in a λ-term where the application of a rule-based function
to an argument can be expanded in terms of the rule. The expansion of the rule takes the
form of substituting a λ-term N for a variable x in another λ-term M , written M [x := N].

Definition 3 (β-reduction) Let P and Q be λ-terms such that Q arises from P by replac-
ing a subterm (λx.M)N of P with M [x := N]. Then we say that P β-reduces in one step to
Q, and write P →1 Q. If Q arises from P by a sequence of one-step β-reductions, then we
say that P β-reduces to Q, and write P → Q.

4

Consider the lambda term (λx. λy. (λz. z z) x y) a. This term contains two redexes.
The entire term is a redex, consisting of the application of λx. λy. (λz. z z) x y to a. There
is also an inner redex : (λz.z z) x. Thus, evaluation can take two different paths:

(λx. λy. (λz. z z) x y) a → λy. (λz. z z) a y

→ λy. a a y,

and

(λx. λy. (λz. z z) x y) a → (λx.λy. x x y) a

→ λy. a a y.

There are a couple of important things to observe about these reduction sequences. First,
both reduction sequences end with normal forms, i.e., λ-terms that do not contain a redux,
and therefore can be evaluated any further. Normal forms are completed computations,
and just as in real-world programming, there are λ-terms that cannot be reduced to normal
form. These terms can be thought of as specifying non-terminating computations. Second,
although the reduction sequences are quite different, both terminated in the same normal
form. This is not an accident.

Theorem 4 (Confluence) Let M → N mean that there is a sequence of β-reductions that
convert M to N . Suppose M → N0 and M → N1. Then there is a λ-term Q such that
N0 → Q and N1 → Q.

Intuitively, the confluence theorem says that if two computations beginning with the
same term diverge, they can be brought back together by β-reduction. The proof of the
confluence theorem is well beyond the scope of this introduction, but it can be found in
any of the standard references [Bar84, HS86], sometimes under the name of the “diamond
property.” The confluence theorem has several substantial corollaries.

Corollary 5 (Uniqueness of Normal Forms) Suppose M → N0 and M → N1, where
N0 and N1 are both normal forms. Then N0 = N1.

The corollary follows directly from the theorem, as if N is a normal form, and N → P ,
then N = P .

Definition 6 (Equivalence) Equivalence (in notation ≡) is the transitive, reflexive, sym-
metric closure of β-reduction.

Corollary 7 (The Church-Rosser Theorem) Let M and N be λ-terms. Then M ≡ N
if and only if there is a λ-term P such that M → P and N → P .

The λ-calculus is essentially the theory of λ-terms under equivalence.

5

2.4 Climbing Out of the Trap

Our discussion of β-reduction has been näıve, or less pejoratively, incomplete, in two different
senses.

The first sense of incompleteness comes from the fact that the choice of name for an
abstracted variable is essentially arbitrary. For example, Ix = λx.x is the identity function,
but so too is Iz = λz. z. In this case, the particular choice of name x or z for the abstracted
variable is arbitrary, and there is no reason to distinguish Ix from Iz. The consistent change
of name of an abstracted variable is called α-reduction, and we view α-reductions as “free.”
Thus, when we write N0 = N1 in Corollary 5, equality means “up to α-convertibility.”

The more substantial incompleteness is that we’ve glossed over what it means to sub-
stitute a λ-term N for a variable x in a λ-term M . Superficially, substitution seems pretty
straightforward.

Definition 8 (Inconsistent Substitution) Let M and N be λ-terms, and let x be a vari-
able. We define the result of substituting N for x in M , written M [x := N], by induction
on the structure of λ-terms as follows:

1. x[x := N] = N ,

2. y[x := N] = y,

3. (λx.P)[x := N] = (λx.P),

4. (λy.P)[x := N] = λy.(P [x := N]),

5. (P Q)[x := N] = (P [x := N]) (Q[x := N]),

where in clauses 2 and 4, y plays the role of any variable distinct from x.

Before we get on with criticizing Definition 8, we should stop and consider what is new
and right about the form of the definition. In effect, Definition 8 defines a function (by abuse
of notation, λz. z[x := N]), whose domain is an inductively defined set (the set of λ-terms).
The definition of the function follows the definition of the inductive set, with clauses 1 and
2 defining substitution into variables, clauses 3 and 4 defining substitution into applications,
and clause 5 defining substitution into compositions. This style of function definition is
safe, and it can be justified in essentially the same way as an inductive definition. Indeed,
functional programmers are very familiar with this style of natural recursion [FFFK02].

The problem with Definition 8 is with clause 4. Consider (λy. x) z N , where N is an
arbitrary λ-term.

(λx. λy. x) z N → (λy. z) N

→ z.

6

This seems entirely straightforward. But we’ve already argued that systematic changes of
abstracted variables shouldn’t matter, thus λx. λy. x = λx. λz. x (note that we’ve changed
y for z). Now,

(λx. λz. x) z N → (λz. z) N

→ N.

If this stands, it means that N ≡ z, without reference to the structure of N . Thus, if M
is another λ-term, essentially the same example shows M ≡ z, and hence M ≡ N , and so
there is only one equivalence class of terms, which is neither interesting nor useful.

The problem comes in the step

(λx. λz. x) z → λz. z.

What happens is that the unbound, second occurrence of z in the left-hand side, becomes
bound as a result of the substitution. In effect, the meaning of the “passive” argument z
changed through the substitution process. This is called the inadvertent capture of a free
variable, and it is not our intent.

The solution to this quandary is to limit clause 4 to the case where y does not have any
unbound occurrences in N :

Definition 9 (Substitution) Let M and N be λ-terms, and let x be a variable. We define
the result of substituting N for x in M , written M [x := N], by induction on the structure of
λ-terms as follows:

1. x[x := N] = N ,

2. y[x := N] = y,

3. (λx.P)[x := N] = (λx.P),

4. (λy.P)[x := N] = λy.(P [x := N]),

5. (P Q)[x := N] = (P [x := N]) (Q[x := N]),

where in clauses 2 and 4, y plays the role of any variable distinct from x, and where in
clause 4, we require that y does not have any unbound occurrences in N .

Is this satisfactory? Initially, the answer seems to be “no,” because our definition is
no longer complete: we seem not to define (λy.P)[x := N] in the case where y has free
occurrences in N . But we’re forgetting about our convention that the choice of binding
variable in an abstraction is essentially arbitrary. If y has free occurrences in N , we’re
permitted to replace it in λy. P by a variable y′ that doesn’t, thus

(λy. P)[x := N] = (λy′. P [y := y′])[x := N]

= λy′. (P [y := y′][x := N])

7

Getting the definition of substitution right, in this context or any other, is tricky, and it
has often been done incorrectly. One is tempted to say that the examples that show problems
with the incorrect definitions are contrived, but experience shows otherwise2.

3 Computing in the λ-Calculus

Lisp is a general purpose programming language, and the connections between Lisp and the
λ-calculus should be obvious to those familiar with both. This argues that it should be
possible to use the λ-calculus as a means of specifying and carrying out computations. Of
course, this argument gets historical causality wrong: it was the usefulness of the λ-calculus
as a means of specifying and carrying out computations that lead McCarthy [McC60] to
implement them as a concrete programming language.

But real-world programming languages, like Lisp, have facilities that are not obviously
present in the pure λ-calculus: they have primitive datatypes for things like the integers,
they have ways to create composite types (tuples, records, vectors, etc.), and they have
control structures such as conditionals and recursion. It is not immediately whether or not
analogs to these facilities can be found in the λ-calculus.

3.1 Tupling and Untupling

A place to begin is with simple pairs. We can represent the pair (M0, M1) by λz. z M0 M1.
From this, we can define a pairing function τ = λx. λy. λz. z x y. The projection functions
are π0 = λp. p (λx. λy. x) and π1 = λp. p (λx. λy. y).

Exercise 1 Draw a graphical representation, as in Figure 1 for the pairing function τ .

2Most famously, when John McCarthy first defined the Lisp programming language based on the λ-
calculus, he described the evaluation process through equations that essentially embodied the incorrect
definition of substitution.

By the time it was realized that a mistake had been made, Lisp programmers had come to rely on the
behavior—many of the captures of a free variable were intentional. This naturally lead to a reluctance to
view what Lisp did as incorrect, and the ostensibly non-normative terminology of dynamic scope was used
to describe what Lisp did, whereas static scope was used to describe what the λ-calculus (and program-
ming languages in the Algol family) did. The primary advantage of dynamic scope was that it enabled a
programming idiom in which the value of a global variable could be locally overridden. This meant that a
procedure could in effect take a very large number of implicit arguments which were given default values in
the global environment, and overridden as needed. The primary disadvantage of dynamic scope was that
it was no longer sufficient to understand what a procedure was intended to do to understand how using it
would impact your program: you also had to understand how it was implemented.

The argument over dynamic vs. static scope was sustained until compliation became an important means
for speeding up Lisp programs. During compliation, the abstracted variables become associated with storage
locations rather than names, and capture (intentional or not) does not occur. As a result, Lisp programmers
discovered that while interpreted programs used dynamic scope, the compiled versions of the same programs
used static scope. As compliation technologies improved, it became faster to execute a single line of code by
compiling it and executing the compiled code than by simple interpretation.

Soon thereafter, Lispers threw in the towel, and modern versions of Lisp [KCE98, Ste84] use static scope,
i.e., correct substitution rules.

8

We verify that the pairing function works as intended:

τ M0 M1 = (λx. λy. λz. z x y) M0 M1

→ (λy. λz. z M0 y) M1

→ λz. z M0 M1

= (M0, M1),

and that π0 works as intended:

π0 (M0, M1) = (λp. p (λx. λy. x)) (M0, M1)

→ (M0, M1) (λx. λy. x)

= (λz. z M0 M1) (λx. λy. x)

→ (λx. λy. x) M0 M1

→ (λy. M0) M1

→ M0

Exercise 2 Show that π1 (M0, M1) → M1.

Arbitrary n-tuples can be dealt with in an analogous fashion. For example, if n = 4, we
can represent (M0, M1, M2, M3) by λz. z M0 M1 M2 M3. We then have a 4-tupling function
τ4, and projection functions π4,0, π4,1, π4,2 and π4,3, by analogy with pairing.

3.2 Conditionals

We can represent true by λx. λy. x, and false by λx. λy. y. We can represent the construc-
tion if M then P else Q by M P Q.

Exercise 3 Show that the if . . . then . . . else . . . construction has the intended reduction
properties, i.e.,

if true then P else Q → P,

and

if false then P else Q → Q,

3.3 Numbers

We define fn x, the n-fold iteration of f at x, by induction on n as follows:

• f 0 x = x,

• fn+1 x = f (fn x).

9

A definition like this gives us a simple recipe for constructing fnx for any n, e.g.,

f 3 x = f (f 2 x)

= f (f (f 1 x))

= f (f (f(f 0 x)))

= f (f (f x))

Definition 10 (Church numerals) Let n be a natural number, i.e., an element of the set
{0, 1, 2, . . .} of non-negative whole numbers. The Church numeral dne = λf. λx. fn x.

Church numerals are λ-terms, which can be used to represent the natural numbers in the
λ-calculus. For this to be useful, we need to show that there are functions that implement
the standard number theoretic functions on the natural numbers. For example, consider the
successor function: S n = n + 1. Our obligation is to construct a λ-term dSe such that
dSe dne → dn + 1e. We chose dSe = λn. λf. λx.n f (f x). Now:

dSedne = (λn. λf. λx.n f (f x)) dne
→ λf. λx. dne f (f x)

→ λf. λx. fn (f x)

→ λf. λx. fn+1x

= dn + 1e,

as required.
For addition, we need a λ-term d+e such that d+edmedne → dm + ne. One such term is

d+e = λm. λn. λf. λx. m f (n f x). We leave the verification to as an exercise.

Exercise 4 Show that d+e dme dne → dm + ne.

Exercise 5 Construct a λ-term d×e such that d×e dme dne → dm× ne.

Exercise 6 Show that there is a λ-term dzero?e that computes the “equal to zero” predicate.

dzero?e dne →
{

true, if n = 0
false, if n > 0.

There is an interesting story regarding Church numerals. Church numbers were defined,
and their properties first explored, by the mathematician Alonzo Church and his Ph.D. stu-
dent Stephen Kleene. The λ-terms dSe, d+e, and d×e were quickly discovered, but subtrac-
tion over proved much more difficult. They tried for a long time to find a λ-represention
for subtraction, without success. Finally, while sitting in the dentist’s chair, Kleene had
a flash of inspiration and realized how it could be done. His approach lead in time to a
much deeper understanding of the λ-calculus, and ultimately to another formal system for
computing over the natural numbers called the Kleene µ-calculus, which is a progenitor of
algebraic programming languages like C, Algol, Pascal, and Java.

We begin by considering the predecessor function.

10

Definition 11 (Predecessor) The predecessor function P is defined as follows:

• P 0 = 0,

• P (S n) = n.

Consider the function ι : (x, y) 7→ (y, S y).

Exercise 7 Show that ι is λ-definable, i.e., there exists a λ-term dιe such that dιe (x, y) →
(y, dSe y).

We can prove by induction on n that ιn (0, 0) = (P n, n), and therefore that π0 ιn(0, 0) =
P n. We now define dP e = λn. π0 (n dιe (d0e, d0e)), and see

dP edne = (λn. π0 (n dιe (d0e, d0e)) dne
→ π0 (dne dιe (d0e, d0e))
→ π0 (dιen (d0e, d0e))
→ π0 (dP ne, dne)
→ dP ne

The approach is a familiar use of register-based programming for students familiar with
Scheme, especially as covered in Felliesen, et. al. [FFFK02]. Indeed, with the right hints,
and having seen a few well chosen examples, this is a program that a reasonably talented
Scheme student would be expected to discover. But this is no knock on Kleene—he had no
hints, and no examples. There had to be a first register-based program, and this was it.

Definition 12 (Monus) Let m and n be natural numbers. We define the monus (.−) func-
tion as

m .− n =

{
m− n, if m ≥ n
0, if m < n.

Monus is a version of subtraction with a domain truncated to the natural numbers.

It is easy to see that m .− n = P n m. From this, the λ-definability of .− follows almost
immediately.

Exercise 8 Show that there is a λ-term d .−e such that

d .−e dme dne → dm .− ne.

The subsequent development of λ-computability over the Church numerals was extremely
rapid, and all of the standard number-theoretic functions—exponentiation, Euler’s φ func-
tion, etc.—were soon shown to be λ-computable. Indeed, these are contained in the much
larger, and mathematically important class of primitive recursive functions, and it was shown
that all of the primitive recursive functions are λ-computable. When it was shown that Acker-
mann’s function (a computable function that is not primitive recursive) is also λ-computable,
Church made the following famous conjecture:

11

Conjecture 13 (Church’s Thesis) If f is a computable number-theoretic function, then
there is a λ-term dfe such that for all n ∈ dom(f),

dfe dne → df ne.

This is a powerful conjecture, as it amounts to a claim that the λ-calculus is universal,
at least with respect to computation over the natural numbers. The impact comes from the
fact that for Church, the term “computable” is not defined, instead it is to be interpreted in
its intuitive sense—there is a finite set of rules, which, if followed by a limited deterministic
agent for finitely many steps on a given input n, results in the computation of f n.

References

[Bar84] Hendrik Peter Barendregt. The Lambda Calculus, volume 103 of Studies in Logic
and the Foundations of Mathematics. Elsevier Science Publishers B. V., Amster-
dam, 1984.

[Chu41] Alonzo Church. The Calculi of Lambda Conversion, volume 6 of Annals of Math-
ematics Studies. Princeton University Press, Princeton, New Jersey, 1941.

[FFFK02] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthy. How to Design Programs. The MIT Press, Cambridge, Massachusetts,
2002.

[Göd31] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme, I. Monatshefte für Mathematik und Physik, 38, 1931. Trans-
lated in von Heijenoort [vH67].

[HS86] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and the
λ-calculus, volume 1 of London Mathematical Society Student Texts. Cambridge
University Press, Cambridge, United Kingdom, 1986.

[KCE98] Richard Kelsey, William Clinger, and Jonathan Rees (Editors). Revised5 report
on the algorithmic language Scheme. ACM SIGPLAN Notices, 33(9):26–76, 1998.

[McC60] John L. McCarthy. Recursive functions of symbolic expressions and their com-
putation by machine, part I. Communications of the ACM, 3(4):184–195, 1960.

[Mos79] Yiannis N. Moschovakis. Descriptive Set Theory. Elsevier Science Ltd, Amster-
dam, 1979.

[Ste84] Guy Steele. Common Lisp: The Language. Digital Press, Woburn, Massachusetts,
second edition, 1984.

[vH67] Jean von Heijenoort. From Frege to Gödel: A Source Book in Mathematical Logic.
Harvard University Press, Cambridge, Massachusetts, 1967.

12

