
Elimination of Redundant Array Subscript Range Checks *

Abstract

Priyadarshan Kolte and Michael Wolfe

Department of Computer Science and Engineering

Oregon Graduate Institute of Science & Technology

{pkolte, mwolf e}@cse. ogi. edu

This paper presents a compiler optimization algorithm to re-

duce the run time overhead of array subscript range checks

in programs without compromising safety. The algorithm

is based on partial redundancy elimination and it incorpo-

rates previously developed algorithms for range check op-

timization. We implemented the algorithm in our research

compiler, Nascent, and conducted experiments on a suite of

10 benchmark programs to obtain four results: (1) the ex-

ecution overhead of naive range checking is high enough to

merit optimization, (2) there are substantial differences be-

tween various optimizations, (3) loop-based optimizations

that hoist checks out of loops are effective in eliminating

about 98’% of the range checks, and (4) more sophisticated

analysis and optimization algorithms produce very marginal

benefits.

1 Introduction

Program statements that access elements of an array outside

the declared array ranges introduce errors which can be dif-

ficult to detect. Since compile-time checlang of whether all

array accesses in a program are within the declared ranges

is not possible in general, many compilers offer the option of

inserting run-time range checks into the compded program

so that errors due to array range violations are detected dur-

ing execution. A range check compares the array subscript

expression with the array bounds and then traps (or raises

an exception) if the subscript is not within the declared array

range. In spite of the advantage of compiler-inserted range

checks in improving the reliability of programs, program-
mers often prefer to compile their programs without range

checking because the execution overhead of the range checks
is too high. Hence, compiler optimization that reduce the

execution overhead of range checks without compromising

safety are useful. Range check optimization is especially

beneficial in safety-oriented languages such as Ada, where

*This work is suPDOrted by NSF Grant CCR-9113S85 and gr=nk.
from lntel Supercomputer Systems Division and the Oregon Advanced
Computmg Institute.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery.To copy otherwise, or to republish, requires
a fee and/or specific permission.
SIGPLAN ‘95La Jolla, CA USA
Q 1995 ACM 0-89791 -697-2/95/0006 ...$3.50

range checking is not just a compiler option, but is required

by the language definition.

Although range checks are subject to traditional com-

piler optimizations such as constant propagation, common

sub expression elimination, and invariant code mot ion, range

checks possess an interesting property that we study in this

project: a range check C~ may “imply” a check Cl, and

therefore performing C, makes performmg Cl unnecessary.

For example, Figure l(a) shows a program with two state-

ments, S1 and SZ, and four range checks, Cl Cq. Check

CZ implies check C4 because of the mathematical fact (2 x

iV < 10) ~ (2*N–1 ~ 10). Thus, check C4 IS redundant be-

cause a ‘[stronger” check, C2, has ‘[already been performed,”

The redundant check is eliminated and the optimized pro-

gram has only three range checks as shown in Figure l(b).

Further optimization exploits the fact (2 * N – 1 > 5) a

(2x iV ~ 5) At the program point where check Cl–is per-

formed, the compiler deduces that a stronger check, Cs, is

“guaranteed to be performed in the future.” Hence the com-

piler places the stronger check, Cs, before the weaker check,

Cl, which makes check Cl redundant. The resulting pro-

gram has only two range checks and is shown in Figure 1(c),

Researchers have studied range check optimization as ap-

plications of automated program verification [8, 17], abstract

interpretation [4, 5, 11], and data flow analysis [2, 9, 10].

Range check optimizers have also been implemented in sev-

eral compilers such as the IBM PL.8 compiler [13], the Alsys

Ada compder [14], and the Karlsruhe Ada compiler [16].

This project builds on previous work, especially on the

algorithms present ed by Gupt a [9, 10]; our main contribu-

tions are:

● use of partial redundancy elimination techniques [15,

12] for range check optimization;

● a study of the advantages of using induction variables

[7, 18] in range check optimization;

● an implementation of a range check optimizer in our
research Fort ran compiler, Nascent; and

● an experimental evaluation of the compile time cost

and effectiveness of various optimizations on a suite of
large programs.

We present background and notation in $2. $3 describes
our formulation and solution of the range check optimization
problem. 54 presents the results of our experiments. 85
discusses related work, and 56 concludes.

270

integer A[5.,1O] integer A[5..1o] integer A[5.. 10]
,,,

Cl: if (not (2*N ~ 5)) TRAP
... ...

Cl: if (not (2*N ~ 5)) TRAP C3: if (not (2* N-I ~ 5)) TRAP
C2: if (not (2*N < 10)) TRAP C2: if (not (2*N ~ 10)) TRAP C2: if (not (2*N ~ 10)) TRAP
Sl: A[2*N] = o Sl: A[2*N] = o SI : A[2*N] = o
C3: if (not (2* N-1 ~ 5)) TRAP C3: if (not (2* N-1 ~ 5)) TRAP S2: A[2*N-1] = 1
C4: if (not (2* N-1 ~ 10)) TRAP S2-: A[2*N-1] = 1
S2.: A[2*N-1] = 1

...
...

.

(a) Without any optimization (b) With some optimization (c) With more optimization

Figure 1: Example of a program fragment without and with range check optimizations

2 Background and notation

We assume that the reader is familiar with the control ilow
graph (CFG) abstraction of programs, natural loops, clata
flow analysis [1], and the Static Single Assignment (S/SA)
representation of programs [6].

2.1 Partial redundancy elimination

Partial redundancy elimination (PRE) eliminates redundant

computation of expressions in programs by moving invari-

ant computations out of loops and also eliminating identical

computations that are performed more than once on any ex-

ecution path. Although we use terms defined by Morel and

Renvoise [15] in this paper, our implementation of PRE uses

the safe-earliest and latest-not-isolated transformations de-
veloped by Knoop, Ruthing, and Steffen [12] because tlhese

transformations are conceptually simpler and more efficient
than the techniques originally proposed by Morel and Ren-
voise. The general strategy of PRE transformations of pro-
grams is as follows.

1. Identify sets of equivalent expressions. Expres-

sions in the program we partitioned into equivalence

classes. Usually, syntactic equivalence is used to de-

termine if two expressions are equivalent.

2. Solve data flow systems for availability y and an-

ticipatability of expressions. An expression e is

available at a program point p if some expression in

the equivalence class of e, say e’, has been computed
on every path from the entry of the CFG to p and

none of the operands of e have been redefined since
the computation of e’. Intuitively, an expression e is

available at point p if the value of e has always lbeen

computed when program execution reaches point p.
Forward data flow analysis is used to determine avail-
ability of expressions in programs.

An expression e is anticipatable at a program point p

if e is computed on every path from p to the exit of

the CFG before any of the operands of e are redefined.

Intuitively, an expression e is anticipatable at point p

if e is always guaranteed to be evaluated at some point
after the execution of program point P. Backward data
flow analysis is used to determine anticipatability of
expressions in programs.

3.

4.

Determine points in the program where new

computations of expressions can be safely and

profitably inserted. It is safe to insert an expression

at a program point only if inserting the expression does

not change the behavior of the program, The principal

observation is that if an expression e is anticipatable

at a program point p, then it is safe to insert a com-

putation of e at point p. It is profitable to insert a

computation of expression e at program point p if e
is not already available at point p and if the insertion

of e at p makes some other computations of e (on the
program execution path after point p) redundant.

Eliminate redundant comput at ions. The compu-
tation of an expression e at program point p is redun-

dant if e is available at p. A redundant computation

is replaced by a copy of the result of the computation

that is available.

The safe-earliest and latest-not-isolated transformations

are two techniques for PRE. They differ from each other
in the placement of new computations that are inserted in

step 3 above: the safe-earliest strategy is to place compu-

tations as early in the program execution path as possible,

whereas the latest-not-isolated strategy places computations

as late as possible to minimize register pressure.

2,2 Canonical form of range checks

Range checks of the form (if (not (subscript-expression S

upper-bound-expression)) then TRAP) are expressed in the

canonical form: (Check (range-expression < range-constant)),

where range-expression contains all the symbolic terms of

the check and all the constants in the check are folded into
the range-constant term; e.g., the check (if (not (i+l < 4* N))

then TRAP) is expressed as (Check (i–4*N < –l)). The

symbolic terms in range-expression are also listed in a canon-
ical order whenever rearrangement of the terms is possible.
Lower bound checks are expressed in canonical form after

negating both sides of the inequality; e.g., the check (if (not

(i+l z 4)) then TRAP) is expressed as (Check (-i < -3)).
The canonical form is used so that semantically equiva-

lent range checks (which may be syntactically different) fall
into the same equivalence class in step 1 of the PRE al-
gorithm. Intuition suggests that larger equivalence dames
(fewer classes) usually increase the number of redundant ex-
pressions. Thus, the intent and effect of the canonical form

271

Program fragment SSA representation PRX INX Classification

j=(l j~=o

k=3 ko=3
m=5 m=5

for i = O to n–1 do fori=Oton–ldo i h Linear

jl = @ (jo, j2)
kl = @ (ko, kz)

j=j+l jz=jl+i h*(h+l)/2 Polynomial

k=k+m kz=kl+m ?2 5*h+8 Linear
A[k]=2*m+l A[k2]=2*m+l 2*m+l 11 Invariant

endfor endfor

Figure 2: Example of induction variable analysls in the Nascent compiler

of range checks is similar to the global reassociation tech-

nique described by Briggs and Cooper [3]. The canonical

form also simplifies the representation and manipulation of

range checks within the compiler. We use the canonical form

to denote range check statements in the rest of the paper.

2.3 Range checks using induction expressions

The Nascent compiler uses SSA-based induction variable

analysis techniques to associate induction expressions with

all expressions in a program [7, 18]. Each loop in the pro-
gram is assigned a basic loop variable which assumes values

0,1,. . . for every loop iteration; each expression in the loop is

associated with an induction expression which is a function

of the basic loop variable. Induction expressions are classi-

fied as invariant, linear, polynomial, etc., depending on their

complexity. When possible, the trip counts of natural loops

are also determined by the analysis.

Figure 2 shows an examplel of induction variable anal-

ysis on a loop that has been assigned the basic loop vari-

able h. Induction variable analysis determines the induction

expressions for all the program expressions; e.g., the pro-

gram expression kz is associated with the induction expres-

sion 5*h+8. In the table in Figure 2, the column labeled
“PRX” shows some of the program expressions, the column

labeled “INX” shows induction expressions associated with
the program expressions, and the last column shows the clas-

sifications of the induction expressions. Induction variable

analysis also determines that the trip count of the loop is

max(O,n).
Range checks are created from either program expres-

sions (using the abstract syntax tree of the program) or

from induction expressions (using induction variable analy-

sis). When we need to distinguish between the two kinds of
checks, we use the abbreviation PRX- Check to mean a check
that IS created from program expressions, and INX- Check to
mean a check that is created from reduction expressions. For
example, if the upper bound of the array A in the program
in Figure 2 is 100, then we can use either PRX-Check (kz
~ 100) or lNX-Check (5*h < 92) as the upper bound check

for A[k].

lFor clarity in this example, the loop index variable, 1,is not shown
in SSA form, and the loop is not decomposed into test and branch
constructs.

C3 C4

Figure 3: Check Implication Graph (CIG) of the program

fragment shown in Figure 1(a)

3 Range check optimization

The goal of range check optimization is to reduce the exe-

cution overhead of range checking without affecting the be-

havior of programs. A range check optimization preserves
the behavior of a program if (1) an array range violation is

detected in the optimized program if and only if the array

range violation 1s detected in the unoptimized program and
(2) a range violation in the optimized program is detected

at compile-time or at run-time at a program execution point

no later than the execution point at which the violation in

the unoptimized program is detected.

Our solution to the range check optimization problem takes

the program with range checks as input and optimizes It in
five steps:

1. Construct the check implication graph. A Check
Implication Graph (CIG) is a dkected graph in which
the nodes represent range checks (all equivalent checks
share a node). There is an edge from node C, to node
C3 in the CIG only if check C, implies check Cj. Fig-
ure 3 shows an example CIG.

The CIG is required for computing the “as strong as”

relation on checks: check C, IS as strong us check Cj if
there is a path (possibly a trivial path) from node Ci
to node C, in the CIG.

272

2. Compute safe insertion points for checks, If

checks that are as strong as check C are anticipatable

at a program point, then it is safe to insert check C

at the program point. Computing anticipatable checks

requires backward data flow analysis.

3. Insert checks at safe and profitable program

points. Usually it is safe to insert a check at multi-

ple points in the program, and multiple checks can be

inserted at each program point. Hence, the compiler

has to determine the “optimal” checks to reinserted

at the “optimal” program points. There are at least

five different schemes for inserting these checks, which

we describe in section 3.3.

4. Compute available checks and eliminate redund-

ant checks. If checks that are as strong as check

C are available at the program point where C occurs,

then C is redundant and is eliminated from the pro-

gram. Computing available checks requires forward

data flow analysis.

5. Eliminate compile time checks. Checks in the GIG

that contain only compile time constants are evaluated

in this step. Compile-time checks that evaluate to FaIse

are replaced by TRAP instructions and are reported

to the programmer; checks that evaluate to true are

eliminated from the program.

The following subsections explain the parts of our solu-

tion in more detail.

3.1 Construction of the check implication graph

A family is a set of range checks which have the same range-

expression; e.g., Check (i+j < 10) and Check (i+j < 11) are in

the same family. Within each family, the list of range checks

is ordered in increasing order of the range-constants of the

checks. Thus, if C; and C~ belong to the same family and

C, appears earlier in the list than C2, then C, is stronger

than CJ.

We optimize the construction of the CIG by using fam-

ilies of checks as nodes of the CIG instead of range checks.

For example, the CIG shown in Figure 3 after optimization

consists of only two nodes: F 1 and FZ, where FI cent ains

checks {C3, Cl}, and FZ contains checks {CZ, C4}.

In addition to simplifying the detection of implications

between checks in the same family, using families as nodes of

the CIG helps discover implications between checks in differ-

ent families. Whenever we discover an implication between

two checks, say Ci/ (in family FI) and Cj, (in family FJ), we

add an edge from node FI to node FJ and give edge (FI, FJ)

a weight equal to range-con stant(C7/) – range-constant(G,/).

Then, for any two checks C, in family FI and C3 in family FJ,

if range-constant(c,) + weight(FI, FJ) < range-constant(cf),

then we know that check C, is as strong as check Cj.

For example, consider families Fs and Fq shown in Fig-

ure 4. If we find that Check (n < 6) * Check (m < 10), we
add an edge from Fs to F1 with weight 4. Using this edge,

it is simple to infer that Check (n < 1) is as strong as Check
(m < 7), but we cannot infer that Check (n < 1) is as strong

as Check (m < 3).
If an edge E, has to be added between nodes in the CIG

which already has edge EJ between them, the weight of EJ

is modified to be the minimum of the weights of E; and EJ.

g-w
F3 F4

Figure 4: Example of CIG with families as nodes

—

3.2 Computing available and anticipatable checks

Computing available checks is a forward data flow problem

whereas computing anticipatable checks is a backward data

flow problem. For both data flow problems, a check is killed

by a definition of any of the symbols in its range-expression.

For computing availability, a range check statement gen-

erates a check C as well as all weaker checks (i.e., checks C’

such that C is as strong as C’). Thus, at merge nodes in the

CFG, a check C is available after the merge if checks Cl and
CZ are available on the inputs to the merge such that Cl is

as strong as C and CZ is as strong as C.

For anticipatability, we use similzw but stronger condi-

tions for determining the set of checks generated and those

ant icipat able before a branch. A range check statement gen-

erates a check C and all weaker checks that are in the family

of C. Thus, at branch nodes in the CFG, a check C is ant ici-

patable before the branch if checks Cl and CZ are anticipat-

able after the branch such that Cl is as strong as C, Cz is

as strong as C, and Cl, Cq, and C are members of the same

family. Since anticipatability determines where checks can

be inserted, the restriction that check implications are only
within families ensures that a check is not inserted before

the definition of one of the symbols in its range-expression.

3.3 Insertion of checks at safe and profitable program

points

This section presents five schemes for selecting program points

for placing new checks: no-insertion, safe-earliest and latest-

not-isolated placement, check-strengthening, and preheader

insert ion.

No-insertion is the simplest scheme in which steps 2

and 3 of our solution are skipped and no checks are inserted

in the program. The only redundant checks are due to avail-

ability and compile-time constants (in steps 4 and 5).

The safe-earliest and latest-not-isolated transforma-

tions, developed by Knoop et al. for PRE of arithmetic

expressions [12], can be applied to the problem of range

check placement if the anticipatable and available checks

are computed as described in the previous subsection. The
safe-earliest placement is preferred to the latest-not-isolated
placement because, unlike computation of arithmetic expres-

sions, computing a check does not define any variable, and
hence performing a check early has no effect on register pres-

sure. Furthermore, performing a check as early as possible

increases the number of program points where that check

becomes available, which in turn increases the number of
other checks that become redundant.

Although the safe-earliest transformation always provides
profitable placements for arithmetic expressions, when it is

applied to the problem of determining placements for range

273

(a)

integer A[1..1o]

i =

if (..)
Check (i < 10)
... A[i]...

else
Check (i < 6)
... A[i+4],..

endif

Original program fragment (b)

integer A[1..1o]

Check (i < 10)
if (...)

Check (i < 10)
. ..A[i]...

else
Check (i < 6)
. ..A[i+4]...

endif

After safe-earliest placement

integer A[1.,1o]

i=, .
Check (i < 10)
if (...)

,..A[i]...
else

Check (i < 6)
... A~+4]...

endif

(c) After redundancy elimination

Figure 5: Example of a program where safe-earliest placement is not always profitable

integer A[1..1o]

doj=lto2*n
Check (k < 10)
... A[k]...
Check (j < 10)
... A~]...

enddo

(a) Original program fragment (b)

integer A[I..1o]

Cond-check ((1 < 2*n), k < 10)
Cond-check ((1 < 2*n), 2*n < 10)

doj=lto2*n
Check (k < 10)
...A[k]...
Check (j < 10)
... A[j]...

enddo

After preheader insertion (c)

integer A[1..1o]

Cond-check ((1 < 2*n), k < 10)
Cond-check ((1 < 2*n), 2*n < 10)

doj=lto2m

... A[k]...

... A~]...
enddo

After redundancy elimination

Figure6: Example ofaprogram with preheater insertion

checks (using our anticipatability algorithm for determining

safe program points), it is not guaranteed to produce prof-

itable transformations. For example, the transformation of

the program in Figure 5(a) to that in 5(c) increases the num-

ber of checks performed on the path along the else branch.

Check-strengthening, which was proposed by Gupta
[9, 10], considers program points just before range checks in
the CFG for inserting new checks. For each check C in the

program, check-strengthening computes the strongest antic-

ipatable check C’ that implies the check C, inserts C’ just

before C, and eliminates C (the actual mechanism is to re-
place C by C’). The optimization of the program m Figure

1(b) to the one in Figure l(c) is an example of strengthening,

Check strengthening can be viewed as a conservative form
of the safe-earliest placement which misses some of the opti-

mizat ions, but which avoids the profitability problem shown

in Figure 5.
Preheader insertion is a simple and effective scheme

for hoisting checks out of loops. If check C is anticipatable
at the beginning of the loop body, and if the range-expression
of check C is either invariant or linear in the index variable
of the loop, then a conditional check, C’, is inserted in the
preheader of the loop; the check C’ is conditional on the loop
executing at least once. When the condition can be evalu-
at ed at compile time, an ordinary check is inserted instead
of a conditional check. All loops in the program are pro-

cessed in an inner loop to outer loop manner so that checks
from inner loops are hoisted to the outermost loop possible,

Figure 6 shows an example of check placement performed

by preheader insertion. Since Check (k < 10) is loop-
invariant, it is hoisted out of the loop as Cond-check ((1

< 2*n), k < 10); this conditional check means: if (1 < 2*n)

evaluates to true, then perform Check (k < 10). Since Check

(j < 10) is linear in the loop index vw~able, we perform
loop-limit substitution of the index variable, j, to get

Check (2*n < 10), which is then hoisted out of the loop as
the conditional check Cond-check ((1 < 2*n), 2*n < 10).

Figure 6(b) shows the conditional checks that are inserted

in the preheader of the loop and Figure 6(c) shows the re-

dundant checks eliminated from the loop.
Preheader insertion is more effective in hoisting checks

out of loops than the safe-earliest placement for two rea-

sons: (1) safe-earliest placement does not consider condi-
tional checks and (2) even when the check to be hoisted

out of a loop is not conditional (i.e., it is known at compile
time that the loop executes at least once), the control +IOW

structure of w hi Ie loops prevents the check from being an-
ticipatable at the loop preheader. (A CFG transformation
such as loop rotation can help the safe-earliest placement in

such cases by converting while loops into repeat loops.)

3.4 Implementation in Nascent

We have implemented the algorithm described in the previ-
ous subsections in our research Fortran compiler, Nascent.

The range check optimizer offers six choices for inserting

274

new checks at safe program points: no insertion of checks,

check strengthening only, safe-earliest placement of checks,

latest-not-isolated placement of checks, insertion of only loop

invariant checks in preheaders of loops, and insertion of all

checks that are linear (which includes loop invariant checks)

in preheaders of loops. These options permit us to compare

the various check placement schemes.

The range check optimizer supports three kinds of im-

plications between checks: no implications between checks,

implications between checks in different families only, and

all implications between checks (within and across families).

We use these options to investigate the importance of the

implication property of checks for the optimizations.

The range check optimizer can create program expression

checks (PRX-checks) from the abstract syntax tree repre-

sentation of programs as well as induction expression checks

(INX-checks) from the program representation produced by

the induction variable analysis phase of Nascent. This op-

tion allows us to study the effects of using induction variable

analysis on range check optimization.

4 Experimental results

This section presents experiments that answer the following

questions about range check optimization:

1. Is range check optimization really needed?

2. What is the effectiveness and cost of optimization?

3. Does induction variable analysis help?

4. Is the check implication property important?

We use the dynamic counts of instructions as the mea-

sure of the execution times of programs. The C back-end

of Nascent translates Fortran programs into instrumented C
programs which are then compiled and executed using their

standard input data sets to obtain the dynamic counts of

instruct ions.

For our suite of test programs, we chose 10 scientific

programs from the Perfect, Riceps, and Mendez benchmarks

because these are known to contain substantial array-based

computation [7]. The particular 10 programs chosen for this

study satisfied two criteria: (1) the C back-end of Nascent is
not mature and these programs required no manual editing

to “fix” the C programs, and (2) they had moderate disk

space and computation time requirements.

The first five columns of Table 1 show the names of the
programs and counts of source lines, subroutines, and nat-

ural loops. The two columns labeled “instructions” show

the static and dynamic counts of instructions without range

checking in the benchmark programs. Since the bench-
mark programs were naively translated without any opti-

mization, the instruct ion counts represent the upper limit

on the number of non-range-check instructions.

4.1 Is range check optimization really needed?

The first experiment studies programs to determine whether
range check optimization is necessary. In Table 1, the two
columns labeled “range checks” show the static and dynamic
counts of range checks needed for unoptimized range check-
ing of the programs. The final two columns of Table 1 show
the ratios of the counts of range checks to the counts of all
other instructions. Since the minimum ratio of the dynamic
counts is 22%, the maximum ratio is 66%, and we expect one

range check to translate into at least two instructions, we es-

timate that the overhead of executing range checks without

any optimization is between 44% and 132Y0. This is a pes-

simistic estimate of the overhead of range checking because

the programs are not optimized and we overestimated the

number of non-range-check instructions. We conclude that

the execution overhead of the range checks is high enough

to need optimization.

4.2 What is the effectiveness and cost of optimization?

The second set of experiments measure the effectiveness

and compile time cost of seven check placement schemes on

two kinds of checks: checks constructed from program ex-

pressions (PRX-Checks) and checks constructed from induc-

tion expressions (INX-Checks). The seven check placement

schemes are:

1. NI: redundancy elimination without any insertion of

checks,

2. CS: check strengthening only,

3. LNI: latest-not-isolated placement,

4. SE: safe-earliest placement,

5. LI: preheader insertion of only loop invariant checks,

6. LLS: preheader insertion with loop-limit substitution

of linear checks, and

7. ALL: loop-limit substitution followed by safe-earliest

placement.

The columns of Table 2 show the percentage of checks

eliminated by the various optimization; these percentages
are with respect to the dynamic counts of range checks

shown in Table 1. The last two columns show the com-
pilation times for the 10 programs, which consist of a total

of 26,307 lines of Fortran source code. These times were
obtained by compiling Nascent using the -02 option of g++

and executing Nascent on a Sun SPARCcenter 2000. The

penultimate column, which is labeled “Range”, shows the

CPU time (in seconds) taken by the range check optimiza-

tion phase, and the final column (labeled “Nascent”) shows

the wall clock time (in minutes and seconds) required by

Nascent to parse, optimize, and generate C code for the
10 programs. The range check optimization phase takes

a significant fraction of the compilation time (as much as

computing SSA and performing induction variable analysis)
because we did not fine tune the implementation for speed;

a more sophisticated implementation might halve the time
required for range check opt imizat ion.

When we compare the percentage of PRX-Checks elim-
inated shown in the rows in Table 2, we find that check

strengthening (CS) is marginally better than no check in-

sertion (NI). The number of checks eliminated by the PRE
check placement schemes (LNI and SE) are also very close to

those eliminated by ordinary redundancy elimination (NI);
the maximum improvement is 7% for dyfesm. As expected,
safe-earliest placement (SE) eliminates more checks than the
latest-not-isolated placement (LNI), but not by a lot — the
maximum difference is 2. 9~0 for spec77. Both preheader
placement schemes (LI and LLS) eliminate a much larger
number of checks than the other placement schemes. As ex-
pected, placing only loop-invariant checks in loop preheaders
(LI) is not as good as performing loop-limit substitution of
linear checks (LLS), and LLS eliminates almost 30~0 more

275

instructions range checks check/instr (Yo)

suite program lines subr loops static dynamic static dynamic static dynamic

Mendez vortex 710 20 35 2,148 3,694x10b 672 95OX1O’J 31 26
Perfect arc2d 3,964 39 234 16,050 15,288x105 7,810 10,156x10b 48 66

bdna 3,980 42 276 16)236 3,712x106 4,177 803x 106 25 22
dyfesm 7,608 77 269 7,039 2,724x106 2,765 1,543 x 106 39 57
mdg 1,238 16 56 4,471 13,653x106 1,176 6,344x106 26 46
qcd 2,327 35 168 6,801 1,649x106 2,652 788x106 38 48
spec77 3,885 64 413 15,225 14,920x 106 5,538 7,124x106 36 48
trfd 485 7 79 2,052 3,939X106 292 2,332x10S 14 59

Riceps linpackd 797 11 41 1,738 135x lob 530 61x10b 30 45
simple 1,313 8 75 5,615 43,545x10S 2,738 26,255x106 48 60

Table 1: Program characteristics of benchmark programs

vortex arc2d bd na dyfesm mdg qcd spec77 trfd linpackd simple Range Nascent
NI 89.88 84.60 90.85 69.96 79.70 78.75 81.61 61.01 65.90 92.25 6.8 1:18
Cs 89,89 85.64 90.87 69.96 80.10 78.79 84.57 61.01 65.90 93.94 15.9 1:27

PRX- LNI 89.88 84.61 90.85 76.82 79.70 78.75 84.44 61.01 65.90 92.26 18.4 1:29
Checks SE 89.89 85.64 90.87 76.83 80.10 78.79 87.35 61.01 65.91 93.95 16.7 1:28

LI 89.88 84.60 90.85 69.96 79.70 78.75 81.61 61.01 65.90 92.25 11.0 1:22
LLS 99.99 99.96 98.44 98.74 98.53 97.00 96.67 98.74 99.73 99.97 13.0 1:24
ALL 99.99 99.96 98.44 98.73 98.54 97.06 98.24 98.74 99.73 99.97 24.0 1:35
NI 89.88 86.08 87.62 69.87 78.62 78.28 81.59 60.95 65.47 92.22 11.5 1:22
Cs 89.89 87.63 87.64 69.87 79.02 78,28 84.54 60.95 65.47 93.92 23.4

INX- LNI
1:36

89.88 86.08 87.63 76.73 78.62 78.28 84.38 60.95 65.47 92.24 27.1 1:37
Checks SE 89.89 87.63 87.64 76.73 79.02 78.50 87.32 60.86 65.47 93.93 24.9 1:36

LI 89.88 94.21 90.87 77.99 78.83 85.19 87.53 81.77 67.63 95.96 17.9 1:29
LLS 99.99 98.96 95.81 98.17 97.65 96.57 99.70 98.66 99.72 99.96 21.1 1:32
ALL I 99.99 98.96 95.81 98.16 97.65 96.80 99.71 98.57 99.73 99.96 36.7 1:47 I

Table 2: Percentage of checks eliminated by optimizat ions and time required for compilation. NI = redundancy

elimination wit h no insertion of checks, CS = check strengthening, LNI = latest-not-isolated placement, SE = safe-earliest
placement, LI = preheader placement of only loop invariant checks, LLS = preheader placement with loop-limit substitution

of linear checks, ALL = LLS followed by SE. Range = CPU time (in seconds) required by range optimization, Nascent = wall

clock time (in minutes and seconds) required by Nascent for all 10 programs.

checks than LI in the program dyfesm. Further optimization

such as loop-limit substitution followed by the safe-earliest

placement (ALL) provides a negligible improvement in the
number of checks eliminated.

Comparing the times required for various range check
optimizations shows that no insertion (NI) is fastest (obvi-

ously!), the preheader insertion schemes (LI and LLS) are
moderately expensive, and the PRE-based schemes (CS,

LNI, SE) are the slowest. As expected, within the PRE-
based placement schemes, check strengthening (CS) is faster

than safe-earliest placement (SE), which is faster than the
latest-not-isolated placement (LNI). Similarly, within the
preheader insertion schemes, LI is slightly faster than LLS.
Based on the number of checks eliminated and the compile

time required, preheader insertion with loop-limit substitu-
tion of linear checks (LLS) is the clear winner among all the
check placement schemes

4.3 Does induction variable analysis help optimization?

Table 2 shows a surprising result when we compare the num-
ber of PRX-Checks eliminated with the corresponding num-
ber of INX-Checks: there are a number of cases such as
bd na where a few more PRX-checks were eliminated than
the INX-checks. This result is unexpected because induc-
tion expressions should hold at least as much semantic in-
formation as the program expressions. one explanation is

a particular weakness in the implementation of induction

variable analysis in Nascent that we have not repaired yet.

Even so, range check optimization of INX-checks is never

very bad compared to PRX-checks, and there is one case,

LI optimization of trfd, where about 20% more checks were

eliminated due to induction variable analysis; in this case,

induction variable analysis could detect more loop invari-

ant checks. Until we repair the implementation of induction
variable analysis in Nascent and further experiments indi-
cate otherwise, we conclude that using induction variable

analysis does not help range check opt imizat ion.

4.4 Does implication between checks help optimization?

The third experiment measures the effectiveness of the check
implication property in detecting and eliminating redundant
checks. We used variations of the check implication graph
to produce another three check placement schemes:

1.

2.

3.

NI’: redundancy elimination without any insertion of

checks and with no implications between checks,

SE’: safe-earliest placement with no implications be-
tween checks, and

LLS’: preheader insertion with loop-limit substitution
of linear checks with no implications between checks in
the same family, but with implications between checks

276

vortex ar-c2d bdna dyfesm mdg qcd spec77 trfd linpackd simple Range Nascent
NI 89.88 84.60 90.85 69.96 79.70 78.75 81.61 61.01 65.90
NI’

92.25 6.8 1:18
89.87 82.94 88.85 69.93 79.29 78.72 76.99 61.01 65.88 90.55 8.7

PRX-
1:20

w 89.89 85.64 90.87 76.83 80.10 78.79 87.35 61.01 65.91 93.95 16.7 1:28

IIChecks SE’ 89.87 82.94 88.85 76.79 79.29 78.72 79.79 61.01 65.88 90.57 18.9 1:30
LLS I 99.99 99.96 98.44 98.74 98.53 97.00 96.67 98.74 99.73 99.97 I 13.0 1:24 !

[
] LLS’ 99.99 99.96 98.32 98.68 95.19 96.84 92.30 98.74 99.73 99.58 12,9 1:23
I NI 89.88 86.08 87.62 69.87 78.62 78.28 81.59 60.95 65.47 92.22 11.5 1:22 I

NI’ 89.87 84.05 85.75 69.84 7!3.23 78.25 76.96 60.95 65.44 90.52 14.9 1:25
INX- 89.89 87.63 87.64 76.73 7(9.02
Checks %

78.50 87.32 60.86 65.47 93.93 24.9 1:36
89.87 84.05 85.75 76.70 73.23 78.48 79.74 60.86 65.44 90.55 30.5 1:41

LLS 99.99 98.96 95.81 98.17 9’7.65 96.57 99.70 98.66 99.72 99.96 21.1 1:32
LLS’ 99.99 98.96 95.81 98.11 9’7.65 96.54 99.64 98.66 99.72 99.95 22.0 1:32

Table 3: Percentage of checks eliminated by optirnizations with and without implications between checks, and
time required for compilation. NI = redundancy elimination with no insertion of checks, NI’ = NI with no implications

between checks, SE = safe-earliest placement, SE’ = SE with no implications between checks, LLS = preheader placement

with loop-limit substitution of linear checks, LLS’ = LLS with no implications between checks within the same family. Range

= CPU time (in seconds) required by range optimization, Nascent = wall clock time (in minutes and seconds) required by
Nascent for all 10 programs.

in different families; this maintains implications from

conditional checks inserted in loop preheaders to the

corresponding checks in the loop bodies.

Table 3 shows the results of these three check placement

schemes on the two kinds of checks. When we examine the

number of checks eliminated without using check implica-

tions, we find a marginal decrease (< 3%) in almost all

cases. There is only one program, spec77, where 7% fewer
checks were eliminated without use of the check implication
property!

Why do optimizations that use implication (NI and SE)
take less time than optimizations that do not use implication

(NI’ and SE’)? We did not modify the implementations of

the anticipatability and availability data flow algorithms to

take advantage of the fact that there are no implications

between checks in NI’ and SE’; these implementations seau-ch

the check implication graph for implied checks. Hence, in the

case of NI’ and SE’, where no check implies any other, each

check is inserted in a separate family, and the increase in the

number of nodes of the CIG increases the time required by

the data flow algorithms, which increases the time required

for range check optimization.

The results of this experiment indicate that the prop-
erty of implication between checks is not very important

for range check optimization — the only important impli-

cations are those from checks inserted in loop preheaders to

the corresponding checks in the loop bodies.

5 Related work

Related work on range check optimization can be partitioned
into two groups. The first group concentrates on the prob-
lem of identifying range checks which can be evaluated. at

compile-time and eliminated from the program; this includes

the automated program verification approach [8, 17] and the
abstract interpret at ion approach [4, 5, 11, 14, 16]. The sec-
ond group aims to reduce the execution overhead of range

checks which cannot be evaluated and eliminated at compile-
time; this includes algorithms that perform data flow analy-
sis and insertion of checks [2, 9, 10, 13]. Our algorithms are
in the second group.

Suzuki and Ishihata [17] and German [8] used Floyd-
Hoare logics and theorem proving techniques to verify the

absence of array range violations in programs. Two limita-

tions of the program verification approach are that it often

requires the programmer to supply assertions to aid the ver-

ification proofs and that it is restricted to programs written

in a structured manner (without goto statements). Hence,

we feel that this approach is not directly applicable to the

problem of automatic range check optimization of arbitrary

programs.
The abstract interpretation algorithms [4, 5, 11, 14, 16]

perform generation, propagation, and combination of asser-
tions about the bounds of variables to determine compile-

time checks. The different algorithms vary in the sophis-

tication of the rules used for propagation and combination

of the assertions: the rules implemented in the Karlsruhe

Ada compiler [16] seem the simplest (and probably are the

fastest) and those proposed by Cousot and Halbwachs [5] are

quite complex. Since the algorithms in the abstract inter-

pretation approach and the program verification approach

do not perform any insertion of checks in the program (steps
2 and 3 of our solution), they take advantage only of com-

pletely redundant checks and they miss opportunities for

exploiting partially redundant checks. The main weakness

of these algorithms is that they do not attempt to reduce the
run time overhead of checks which cannot be evaluated at

compile time. Hence we expect the number of checks elimi-

nated by these algorithms to be less than algorithms which
insert checks.

It seems curious that both the implementations of Ada

compilers [14, 16] use partial redundancy elimination for the

optimization of most program expressions, but not for opti-
mizing range checks. Perhaps these compilers are conserva-

tive due to the Ada language requirement that the compiler
is not permitted to move a computation to a program point

which might change the exception handler that is invoked
in case an exception occurs in the computation.

Markstein, Cocke, and Markstein [13] presented the first

paper that addresses the problem of reducing the execution
overhead of range-checks. They described an algorithm that
is like a restricted form of preheader check insertion; the

only checks that it considers for preheader insertion are the
checks present in articulation nodes in the loop body (be-
cause these nodes post-dominate the loop entry nodes and
dominate the loop exit nodes) and which have simple range
expressions. More recent approaches [9, 10] and our algo-

277

rithms handle checks with more complex range expressions

and use data flow analysis to relax the restriction about

checks in articulation nodes. In light of our experimental

results, which show that the additional sophistication may

not be cost effective, it would be interesting to implement

the Markstein et al. algorithm in Nascent to compare its

effectiveness with the loop-limit substitution algorithm.

The range check optimization algorithm presented in this

paper is baaed on work by Gupta [9, 10]. We use a partial

redundancy elimination framework to implement the data
flow analysis and optimizations described by Gupta. It is

not clear how Gupta represents implications between checks

in the compiler; we have proposed check implication graphs

to denote and manipulate implications between checks. In

contrast to Gupta’s rules for determining whether loop-limit

substitution is applicable to a check within a loop, we use

induction expressions and induction type classifications (in-

variant and linear) produced by Nascent. Our experimental

results match the limited results presented by Gupta.

Asuru [2] also extends Gupta’s range check optimization

algorithms. Our loop-limit substitution technique is sim-
ilar to his conservative expression substitution algorithm.

His technique of loop guard elimination is a restricted form
for exploiting implications between conditional checks in the

check implication graph. A weakness of Asuru’s proposal to

exploit range checks that post-dominate an array reference
is that it does not detect a range violation until after it

occurs; we avoid this problem in our opt imizat ions.

6 Conclusions

We have synthesized an algorithm for range check opti-
mization from previously develop ed t echruques, and we have

shown the relationship of the previous techniques with this

algorithm. We implemented the range check optimizer and

provided a thorough experimental evaluation of different al-

ternatives for range check optimizations on a suite of non-
trivial Fortran programs.

Our experimental results indicate that insertion of range
checks in programs is beneficial and that there are signifi-

cant differences in the number of checks eliminated by dif-
ferent check placement schemes. Simple optimizations such

as preheader insertion with loop-limit-substitution of linear

checks greatly reduce the execution overhead of range checks

with only a moderate increase in compilation time. Increas-
ing the sophistication of the analysis and optimization algo-

rithms increases compilation time, but does not necessarily
produce appreciable improvements.

Although our experimental results were obtained on a

specific set of programs written in Fortran, we believe that
they would be applicable to a larger variety of programs

written in other languages. These results should improve
the practical usefulness of range checking by encouraging

compiler writers to perform range check optimization and
programmers to use range checking in production versions
of programs.

References

[1] A. V. Aho, R. Sethi, and J. D. Unman. Cornpders, Princi-
ples, Techniques, and Took. Addison–Wesley, 1986.

[2] J. M. Asuru. Optimization of array subscript range checks,

ACM Letters on Programming Languages and Systems, vol.
1, no. 2, 109-118, June 1992.

[3] P. Briggs and K. D. Cooper. Effective partial redundancy

elimination. Proceedings of the ACM SIGPLA N ’94 Con-
ference on Programming Language Design and Implemen-

tation, 159-170, June, 1994.

[4] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction
or approximation of fixpoints, Conference Record of the 4ih
ACM Symposzum on Principles of Programming Languages,
238-252, January, 1977.

[5] P. Cousot and N. Halbwachs. Automatic discovery of linear
restraints among variables of a program. Conference Record
of the @h ACM Symposium on Principles of Programming
Languages, 84-96, January, 1978.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman and
F. K. Zadeck. Efficiently computing static single assignment
form and the control dependence graph. ACM Transactions
on Programming Languages and Systems, vol. 13, no. 4,
pp. 451–490, October, 1991.

[7] M. P. Gerlek, E. Stoltz, and M. Wolfe. Beyond induc-
tion variables: Detecting and classifying sequences using a
demand-driven SSA form. ACM Transactions on Program-
ming Languages and Systems, to appear.

[8] S. M. German. Automating proofs of the absence of common
runtime errors. Conference Record of the @h ACM Sym-
posium on Principles of Programming Languages, 105-118,
January, 1978.

[9] R. Gupta. A fresh look at optimizing array bound checking.
Proceedings of the ACM SIGPLAN ’90 Conference on Pro-
grammmg Language Design and Implementation, 272-282,
June, 1990.

[10] R. Gupta. Optimizing array bound checks using flow analy-
sis. ACM Letters on Programming Languages and Systems,
vol. 2, nos. 1-4, 135-150, March-December, 1993.

[11] W. H. Harrison. Compiler analysis for the value ranges for
variables. IEEE ‘i”ransactaons on Software Engineering, SE-
3, 3, 243-250, May, 1977.

[12] J. Knoop, 0, Riithing, and B. Steffen. Lazy code motion.
Proceedings of the ACM SIGPLAN ’92 Conference on Pro-

grammmg Language Design and Implementation, 224-234,
June, 1992.

[13] V. Markstein, J. Cocke, and P. Markstein. Optimization of
range checking. Proceedings of the SIGPLA N ‘8.2 Sympo-
sium on Compiler Construction, 114-119, June 1982.

[14] E. Morel. Data flow analysis and global optimization. in
Methods and tools for compiler construction, B. Lorho (cd.),
Cambridge University Press, New York, 289-315, 1984.

[15] E. Morel and C. Renvoise. Global optimization by suppres-
sion of partial redundancies. Communications of the A CM,

vol. 2, no. 2, 96-103, February, 1979.

[16] B. Schwarz, W. Kirchgassner, and R. Landwehr. An opti-
mizer for Ada – design, experiences and results. Proceedings
SIGPLA N ’88 Conference ma P.oy-ammzng Language De-

sign and Implementation, 175-185, June, 1988.

[17] N. Suzuki and K. Ishihata. Implementation of an array
bound checker. Conference Record of the 4bh ACM Sym-
posium on Principles of Programming Languages, 132-143,
January, 1977.

[18] M. Wolfe. Beyond induction variables. Proceedings of the
ACM SIGPLAN ’92 Conference on Programming Language
Design and Implementation, 162-174, June, 1992.

278

